

Greg Maloney

with modifications by T. Milev

University of Massachusetts Boston

February 28, 2013

Outline

(1) (2.1)Derivatives and Rates of Change

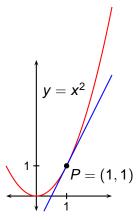
- Tangents
- Velocities
- Derivatives

Outline

(2.1)Derivatives and Rates of Change

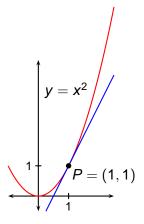
- Tangents
- Velocities
- Derivatives

Tangents



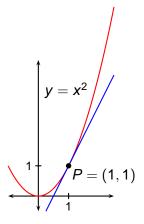
Tangents

Tangents

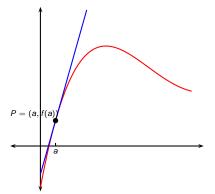


• Recall that in section (2.1) we tried to find the tangent line to the curve $y = x^2$ at the point P = (1, 1).

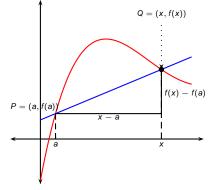
Tangents



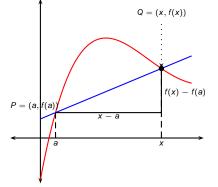
- Recall that in section (2.1) we tried to find the tangent line to the curve $y = x^2$ at the point P = (1, 1).
- This problem motivated us to study limits.



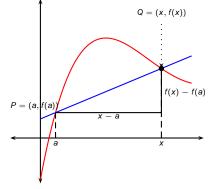
 How to find the tangent line to the curve y = f(x) at P = (a, f(a))?



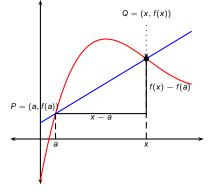
- How to find the tangent line to the curve y = f(x) at P = (a, f(a))?
- Consider a nearby point Q = (x, f(x)).



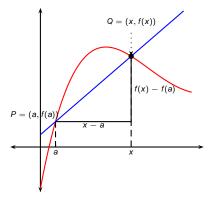
- How to find the tangent line to the curve y = f(x) at P = (a, f(a))?
- Consider a nearby point Q = (x, f(x)).
- Compute slope of secant line *PQ*: $m_{PQ} = \frac{f(x) - f(a)}{x - a}$.



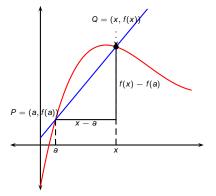
- How to find the tangent line to the curve y = f(x) at P = (a, f(a))?
- Consider a nearby point Q = (x, f(x)).
- Compute slope of secant line *PQ*: $m_{PQ} = \frac{f(x) - f(a)}{x - a}$.
- Let *Q* approach *P* along the curve by letting *x* approach *a*.



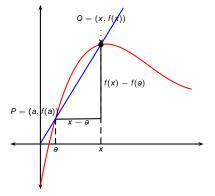
- How to find the tangent line to the curve y = f(x) at P = (a, f(a))?
- Consider a nearby point Q = (x, f(x)).
- Compute slope of secant line *PQ*: $m_{PQ} = \frac{f(x) - f(a)}{x - a}$.
- Let *Q* approach *P* along the curve by letting *x* approach *a*.



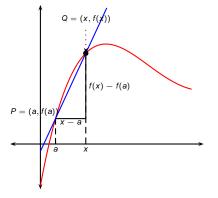
- How to find the tangent line to the curve y = f(x) at P = (a, f(a))?
- Consider a nearby point Q = (x, f(x)).
- Compute slope of secant line *PQ*: $m_{PQ} = \frac{f(x) - f(a)}{x - a}$.
- Let *Q* approach *P* along the curve by letting *x* approach *a*.



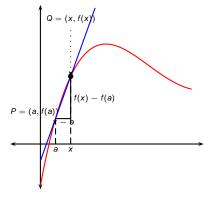
- How to find the tangent line to the curve y = f(x) at P = (a, f(a))?
- Consider a nearby point Q = (x, f(x)).
- Compute slope of secant line *PQ*: $m_{PQ} = \frac{f(x) - f(a)}{x - a}$.
- Let *Q* approach *P* along the curve by letting *x* approach *a*.



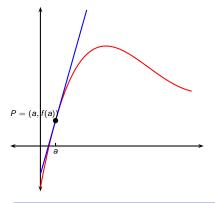
- How to find the tangent line to the curve y = f(x) at P = (a, f(a))?
- Consider a nearby point Q = (x, f(x)).
- Compute slope of secant line *PQ*: $m_{PQ} = \frac{f(x) - f(a)}{x - a}$.
- Let *Q* approach *P* along the curve by letting *x* approach *a*.



- How to find the tangent line to the curve y = f(x) at P = (a, f(a))?
- Consider a nearby point Q = (x, f(x)).
- Compute slope of secant line *PQ*: $m_{PQ} = \frac{f(x) - f(a)}{x - a}$.
- Let *Q* approach *P* along the curve by letting *x* approach *a*.



- How to find the tangent line to the curve y = f(x) at P = (a, f(a))?
- Consider a nearby point Q = (x, f(x)).
- Compute slope of secant line *PQ*: $m_{PQ} = \frac{f(x) - f(a)}{x - a}$.
- Let *Q* approach *P* along the curve by letting *x* approach *a*.



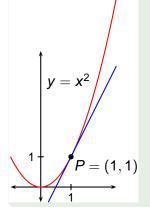
- How to find the tangent line to the curve y = f(x) at P = (a, f(a))?
- Consider a nearby point Q = (x, f(x)).
- Compute slope of secant line *PQ*: $m_{PQ} = \frac{f(x) - f(a)}{x - a}$.
- Let *Q* approach *P* along the curve by letting *x* approach *a*.

Definition (Tangent Line)

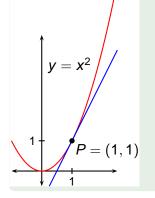
The tangent line to the curve y = f(x) at the point P = (a, f(a)) is the line through *P* with slope

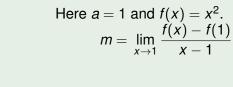
$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

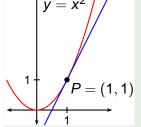
provided that the limit exists.

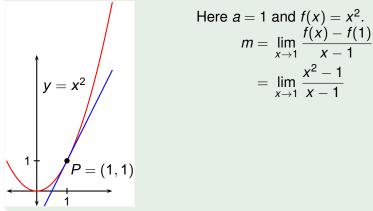


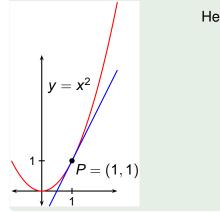
Here
$$a = 1$$
 and $f(x) = x^2$.



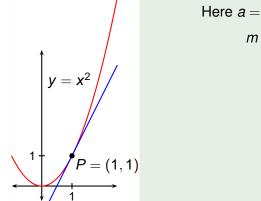








ere
$$a = 1$$
 and $f(x) = x^2$.
 $m = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$
 $= \lim_{x \to 1} \frac{x^2 - 1}{x - 1}$
 $= \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1}$



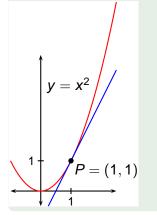
$$e a = 1 \text{ and } f(x) = x^{2}.$$

$$m = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$$

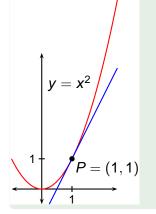
$$= \lim_{x \to 1} \frac{x^{2} - 1}{x - 1}$$

$$= \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1}$$

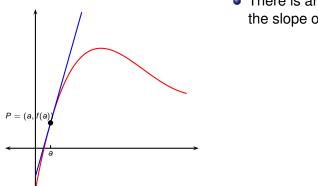
$$= \lim_{x \to 1} (x + 1)$$

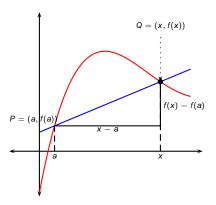


Here
$$a = 1$$
 and $f(x) = x^2$.
 $m = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$
 $= \lim_{x \to 1} \frac{x^2 - 1}{x - 1}$
 $= \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1}$
 $= \lim_{x \to 1} (x + 1) = 1 + 1 = 2$

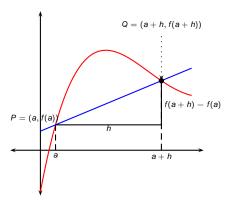


Here
$$a = 1$$
 and $f(x) = x^2$.
 $m = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$
 $= \lim_{x \to 1} \frac{x^2 - 1}{x - 1}$
 $= \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1}$
 $= \lim_{x \to 1} (x + 1) = 1 + 1 = 2$
Point-slope form: $y - 1 = 2(x - 1)$, o
 $y = 2x - 1$.

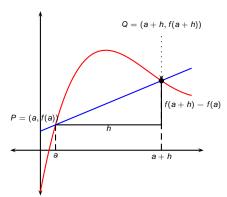




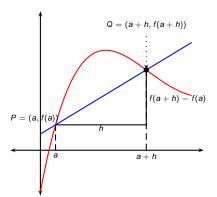
- There is another expression for the slope of the tangent line.
- Our definition involves letting *x* tend to *a*.



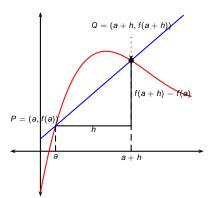
- There is another expression for the slope of the tangent line.
- Our definition involves letting *x* tend to *a*.
- Instead, think in terms of h = x a.



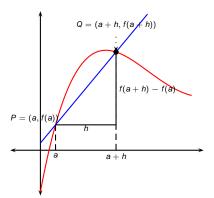
- There is another expression for the slope of the tangent line.
- Our definition involves letting *x* tend to *a*.
- Instead, think in terms of h = x a.
- Then x = a + h and the slope of the secant line *PQ* is $m_{PQ} = \frac{f(a+h)-f(a)}{h}$.



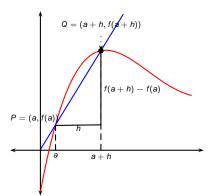
- There is another expression for the slope of the tangent line.
- Our definition involves letting *x* tend to *a*.
- Instead, think in terms of h = x a.
- Then x = a + h and the slope of the secant line *PQ* is $m_{PQ} = \frac{f(a+h)-f(a)}{h}$.
- We still view the slope as a limit, only now in terms of the quantity *h*.



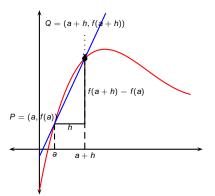
- There is another expression for the slope of the tangent line.
- Our definition involves letting *x* tend to *a*.
- Instead, think in terms of h = x - a.
- Then x = a + h and the slope of the secant line *PQ* is $m_{PQ} = \frac{f(a+h)-f(a)}{h}$.
- We still view the slope as a limit, only now in terms of the quantity *h*.



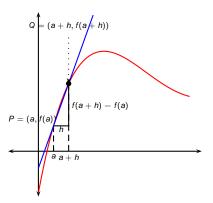
- There is another expression for the slope of the tangent line.
- Our definition involves letting *x* tend to *a*.
- Instead, think in terms of h = x a.
- Then x = a + h and the slope of the secant line *PQ* is $m_{PQ} = \frac{f(a+h)-f(a)}{h}$.
- We still view the slope as a limit, only now in terms of the quantity *h*.



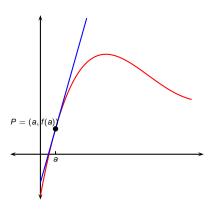
- There is another expression for the slope of the tangent line.
- Our definition involves letting *x* tend to *a*.
- Instead, think in terms of h = x a.
- Then x = a + h and the slope of the secant line *PQ* is $m_{PQ} = \frac{f(a+h)-f(a)}{h}$.
- We still view the slope as a limit, only now in terms of the quantity *h*.



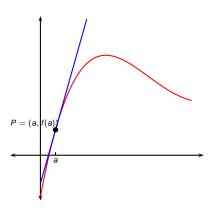
- There is another expression for the slope of the tangent line.
- Our definition involves letting *x* tend to *a*.
- Instead, think in terms of h = x a.
- Then x = a + h and the slope of the secant line *PQ* is $m_{PQ} = \frac{f(a+h)-f(a)}{h}$.
- We still view the slope as a limit, only now in terms of the quantity *h*.



- There is another expression for the slope of the tangent line.
- Our definition involves letting *x* tend to *a*.
- Instead, think in terms of h = x a.
- Then x = a + h and the slope of the secant line *PQ* is $m_{PQ} = \frac{f(a+h)-f(a)}{h}$.
- We still view the slope as a limit, only now in terms of the quantity *h*.



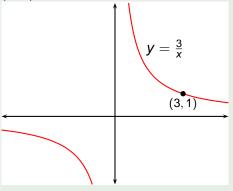
- There is another expression for the slope of the tangent line.
- Our definition involves letting *x* tend to *a*.
- Instead, think in terms of h = x a.
- Then x = a + h and the slope of the secant line *PQ* is $m_{PQ} = \frac{f(a+h)-f(a)}{h}$.
- We still view the slope as a limit, only now in terms of the quantity *h*.



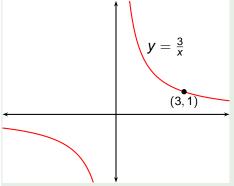
- There is another expression for the slope of the tangent line.
- Our definition involves letting *x* tend to *a*.
- Instead, think in terms of h = x a.
- Then x = a + h and the slope of the secant line *PQ* is $m_{PQ} = \frac{f(a+h)-f(a)}{h}$.
- We still view the slope as a limit, only now in terms of the quantity *h*.

Alternative formula:

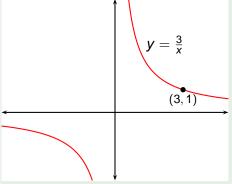
$$m=\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}.$$



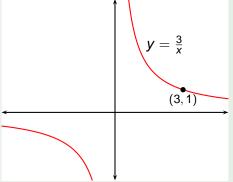
Find an equation for the tangent line to the hyperbola y = 3/x at the point (3, 1).



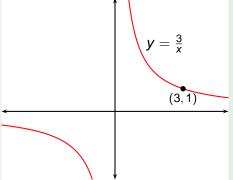
Here a = 3 and f(x) = 3/x.



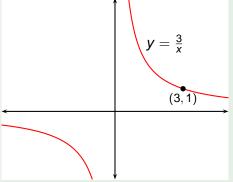
Here
$$a = 3$$
 and $f(x) = 3/x$.
 $m = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$



Here
$$a = 3$$
 and $f(x) = 3/x$.
 $m = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$
 $= \lim_{h \to 0} \frac{\frac{3}{3+h} - 1}{h}$

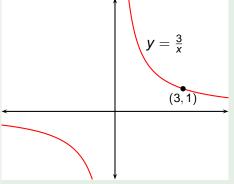


Here
$$a = 3$$
 and $f(x) = 3/x$.
 $m = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$
 $= \lim_{h \to 0} \frac{\frac{3}{3+h} - 1}{h}$
 $= \lim_{h \to 0} \frac{\frac{3 - (3+h)}{3+h}}{h}$



Here
$$a = 3$$
 and $f(x) = 3/x$.
 $m = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$
 $= \lim_{h \to 0} \frac{\frac{3}{3+h} - 1}{h}$
 $= \lim_{h \to 0} \frac{\frac{3 - (3+h)}{3+h}}{h}$
 $= \lim_{h \to 0} \frac{-h}{h(3+h)}$

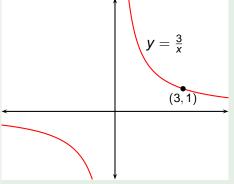
Find an equation for the tangent line to the hyperbola y = 3/x at the point (3, 1).



Here
$$a = 3$$
 and $f(x) = 3/x$.
 $m = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$
 $= \lim_{h \to 0} \frac{\frac{3}{3+h} - 1}{h}$
 $= \lim_{h \to 0} \frac{\frac{3 - (3+h)}{3+h}}{h}$
 $= \lim_{h \to 0} \frac{-h}{h(3+h)}$
 $= \lim_{h \to 0} -\frac{1}{3+h}$

Н

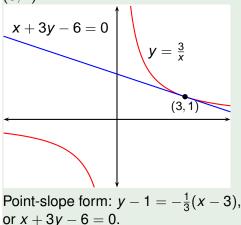
Find an equation for the tangent line to the hyperbola y = 3/x at the point (3, 1).



Here
$$a = 3$$
 and $f(x) = 3/x$.
 $m = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$
 $= \lim_{h \to 0} \frac{\frac{3}{3+h} - 1}{h}$
 $= \lim_{h \to 0} \frac{\frac{3 - (3+h)}{3+h}}{h}$
 $= \lim_{h \to 0} \frac{-h}{h(3+h)}$
 $= \lim_{h \to 0} -\frac{1}{3+h}$

Н

Find an equation for the tangent line to the hyperbola y = 3/x at the point (3, 1).



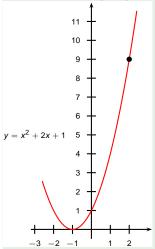
ere
$$a = 3$$
 and $f(x) = 3/x$.
 $m = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$
 $= \lim_{h \to 0} \frac{\frac{3}{3+h} - 1}{h}$
 $= \lim_{h \to 0} \frac{\frac{3 - (3+h)}{3+h}}{h}$
 $= \lim_{h \to 0} \frac{-h}{h(3+h)}$
 $= \lim_{h \to 0} -\frac{1}{3+h} = -\frac{1}{3}$

н

Tangents

Example (Tangent line to a polynomial)

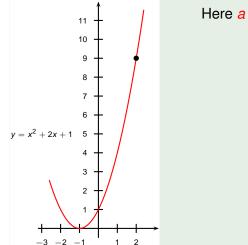
Find an equation for the tangent line to the parabola $y = x^2 + 2x + 1$ at the point P = (2, 9).



Tangents

Example (Tangent line to a polynomial)

Find an equation for the tangent line to the parabola $y = x^2 + 2x + 1$ at the point P = (2, 9).

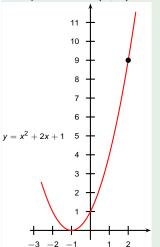


lere
$$a = and f(x) = x^2 + 2x + 1$$
.

FreeCalc Math 140

Example (Tangent line to a polynomial)

Find an equation for the tangent line to the parabola $y = x^2 + 2x + 1$ at the point P = (2, 9).



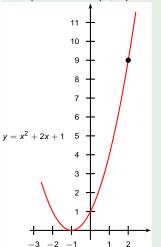
Here
$$a = 2$$
 and $f(x) = x^2 + 2x + 1$.
 $m = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2}$

FreeCalc Math 140

F

Example (Tangent line to a polynomial)

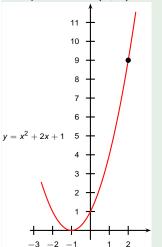
Find an equation for the tangent line to the parabola $y = x^2 + 2x + 1$ at the point P = (2, 9).



lere
$$a = 2$$
 and $f(x) = x^2 + 2x + 1$.
 $m = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2}$
 $= \lim_{x \to 2} \frac{(x^2 + 2x + 1) - 9}{x - 2}$

Example (Tangent line to a polynomial)

Find an equation for the tangent line to the parabola $y = x^2 + 2x + 1$ at the point P = (2, 9).



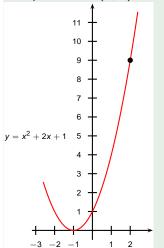
Here
$$a = 2$$
 and $f(x) = x^2 + 2x + 1$.
 $m = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2}$
 $= \lim_{x \to 2} \frac{(x^2 + 2x + 1) - 9}{x - 2}$
 $= \lim_{x \to 2} \frac{x^2 + 2x - 8}{x - 2}$

FreeCalc Math 140

He

Example (Tangent line to a polynomial)

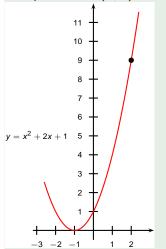
Find an equation for the tangent line to the parabola $y = x^2 + 2x + 1$ at the point P = (2, 9).



re
$$a = 2$$
 and $f(x) = x^2 + 2x + 1$
 $m = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2}$
 $= \lim_{x \to 2} \frac{(x^2 + 2x + 1) - 9}{x - 2}$
 $= \lim_{x \to 2} \frac{x^2 + 2x - 8}{x - 2}$
 $= \lim_{x \to 2} \frac{(x - 2)(x + 4)}{x - 2}$

Example (Tangent line to a polynomial)

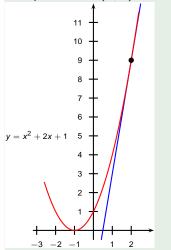
Find an equation for the tangent line to the parabola $y = x^2 + 2x + 1$ at the point P = (2, 9).



Here
$$a = 2$$
 and $f(x) = x^2 + 2x + 1$,
 $m = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2}$
 $= \lim_{x \to 2} \frac{(x^2 + 2x + 1) - 9}{x - 2}$
 $= \lim_{x \to 2} \frac{x^2 + 2x - 8}{x - 2}$
 $= \lim_{x \to 2} \frac{(x - 2)(x + 4)}{x - 2}$
 $= \lim_{x \to 2} (x + 4)$

Example (Tangent line to a polynomial)

Find an equation for the tangent line to the parabola $y = x^2 + 2x + 1$ at the point P = (2, 9).



Here
$$a = 2$$
 and $f(x) = x^2 + 2x + 1$.
 $m = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2}$
 $= \lim_{x \to 2} \frac{(x^2 + 2x + 1) - 9}{x - 2}$
 $= \lim_{x \to 2} \frac{x^2 + 2x - 8}{x - 2}$
 $= \lim_{x \to 2} \frac{(x - 2)(x + 4)}{x - 2}$
 $= \lim_{x \to 2} (x + 4) = 6.$

The tangent line: y = 6x - 3.

Example

Example

Suppose a ball is dropped from the upper deck of the CN Tower, 450m above the ground. What is the velocity of the ball after 5 seconds?

• We need to know what "instantaneous" velocity is.

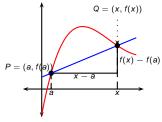
Example

- We need to know what "instantaneous" velocity is.
- Let *f*(*x*) denote the displacement of an object at time *x*.

Example

Suppose a ball is dropped from the upper deck of the CN Tower, 450m above the ground. What is the velocity of the ball after 5 seconds?

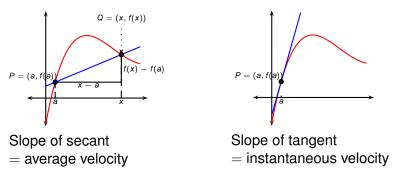
- We need to know what "instantaneous" velocity is.
- Let *f*(*x*) denote the displacement of an object at time *x*.



Slope of secant = average velocity

Example

- We need to know what "instantaneous" velocity is.
- Let *f*(*x*) denote the displacement of an object at time *x*.



Suppose a ball is dropped from the upper deck of the CN Tower, 450m above the ground. What is the velocity of the ball after 5 seconds?

• The distance f(x) (in meters) that the ball has fallen at time x (in seconds) follows Galileo's law: $f(x) = 4.9x^2$.

- The distance f(x) (in meters) that the ball has fallen at time x (in seconds) follows Galileo's law: $f(x) = 4.9x^2$.
- Let *v*(*a*) be its velocity at time *a*.

- The distance f(x) (in meters) that the ball has fallen at time x (in seconds) follows Galileo's law: $f(x) = 4.9x^2$.
- Let *v*(*a*) be its velocity at time *a*.

$$v(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

- The distance f(x) (in meters) that the ball has fallen at time x (in seconds) follows Galileo's law: $f(x) = 4.9x^2$.
- Let *v*(*a*) be its velocity at time *a*.

$$v(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{4.9(a+h)^2 - 4.9a^2}{h}$$

- The distance f(x) (in meters) that the ball has fallen at time x (in seconds) follows Galileo's law: $f(x) = 4.9x^2$.
- Let v(a) be its velocity at time a.

$$V(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{4.9(a+h)^2 - 4.9a^2}{h}$$
$$= \lim_{h \to 0} \frac{4.9(a^2 + 2ah + h^2) - 4.9a^2}{h}$$

- The distance f(x) (in meters) that the ball has fallen at time x (in seconds) follows Galileo's law: $f(x) = 4.9x^2$.
- Let v(a) be its velocity at time a.

$$\begin{aligned} \nu(a) &= \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{4.9(a+h)^2 - 4.9a^2}{h} \\ &= \lim_{h \to 0} \frac{4.9(a^2 + 2ah + h^2) - 4.9a^2}{h} \\ &= \lim_{h \to 0} \frac{4.9(2ah + h^2)}{h} \end{aligned}$$

- The distance f(x) (in meters) that the ball has fallen at time x (in seconds) follows Galileo's law: $f(x) = 4.9x^2$.
- Let v(a) be its velocity at time a.

$$\begin{aligned} \nu(a) &= \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{4.9(a+h)^2 - 4.9a^2}{h} \\ &= \lim_{h \to 0} \frac{4.9(a^2 + 2ah + h^2) - 4.9a^2}{h} \\ &= \lim_{h \to 0} \frac{4.9(2ah + h^2)}{h} \\ &= \lim_{h \to 0} 4.9(2a+h) \end{aligned}$$

- The distance f(x) (in meters) that the ball has fallen at time x (in seconds) follows Galileo's law: $f(x) = 4.9x^2$.
- Let v(a) be its velocity at time a.

$$\begin{aligned} \nu(a) &= \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{4.9(a+h)^2 - 4.9a^2}{h} \\ &= \lim_{h \to 0} \frac{4.9(a^2 + 2ah + h^2) - 4.9a^2}{h} \\ &= \lim_{h \to 0} \frac{4.9(2ah + h^2)}{h} \\ &= \lim_{h \to 0} 4.9(2a+h) = 9.8a \end{aligned}$$

- The distance f(x) (in meters) that the ball has fallen at time x (in seconds) follows Galileo's law: $f(x) = 4.9x^2$.
- Let v(a) be its velocity at time a.

$$v(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{4.9(a+h)^2 - 4.9a^2}{h}$$
$$= \lim_{h \to 0} \frac{4.9(a^2 + 2ah + h^2) - 4.9a^2}{h}$$
$$= \lim_{h \to 0} \frac{4.9(2ah + h^2)}{h}$$
$$= \lim_{h \to 0} 4.9(2a + h) = 9.8a$$
Therefore the velocity after 5s is $v(5) = 9.8(5) = 49$ m/s.

Derivatives

Limits of the type

$$\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$$

arise when we calculate the rate of change in any natural phenomenon. These have a special name and notation:

Derivatives

Limits of the type

$$\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$$

arise when we calculate the rate of change in any natural phenomenon. These have a special name and notation:

Definition (Derivative)

The derivative of a function f at a number a, denoted by f'(a), is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

if the limit exists.

Derivatives

Limits of the type

$$\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$$

arise when we calculate the rate of change in any natural phenomenon. These have a special name and notation:

Definition (Derivative)

The derivative of a function f at a number a, denoted by f'(a), is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

if the limit exists.

Alternative formula:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Find the derivative of the function $f(x) = x^2 - 8x + 9$ at the number *a*.

Find the derivative of the function $f(x) = x^2 - 8x + 9$ at the number *a*.

f'(a) =

Find the derivative of the function $f(x) = x^2 - 8x + 9$ at the number *a*. $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

Find the derivative of the function $f(x) = x^2 - 8x + 9$ at the number a. $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ $= \lim_{h \to 0} \frac{[(a+h)^2 - 8(a+h) + 9] - [a^2 - 8a + 9]}{h}$

Find the derivative of the function $f(x) = x^2 - 8x + 9$ at the number *a*. $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ $= \lim_{h \to 0} \frac{[(a+h)^2 - 8(a+h) + 9] - [a^2 - 8a + 9]}{h}$ $= \lim_{h \to 0} \frac{[a^2 + 2ah + h^2 - 8a - 8h + 9] - [a^2 - 8a + 9]}{h}$

Find the derivative of the function $f(x) = x^2 - 8x + 9$ at the number *a*. $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ $= \lim_{h \to 0} \frac{[(a+h)^2 - 8(a+h) + 9] - [a^2 - 8a + 9]}{h}$ $= \lim_{h \to 0} \frac{[a^2 + 2ah + h^2 - 8a - 8h + 9] - [a^2 - 8a + 9]}{h}$ $= \lim_{h \to 0} \frac{2ah + h^2 - 8h}{h}$

Find the derivative of the function
$$f(x) = x^2 - 8x + 9$$
 at the number *a*.

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

$$= \lim_{h \to 0} \frac{[(a+h)^2 - 8(a+h) + 9] - [a^2 - 8a + 9]}{h}$$

$$= \lim_{h \to 0} \frac{[a^2 + 2ah + h^2 - 8a - 8h + 9] - [a^2 - 8a + 9]}{h}$$

$$= \lim_{h \to 0} \frac{2ah + h^2 - 8h}{h}$$

$$= \lim_{h \to 0} \frac{h(2a+h-8)}{h}$$

~

Find the derivative of the function
$$f(x) = x^2 - 8x + 9$$
 at the number *a*.

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

$$= \lim_{h \to 0} \frac{[(a+h)^2 - 8(a+h) + 9] - [a^2 - 8a + 9]}{h}$$

$$= \lim_{h \to 0} \frac{[a^2 + 2ah + h^2 - 8a - 8h + 9] - [a^2 - 8a + 9]}{h}$$

$$= \lim_{h \to 0} \frac{2ah + h^2 - 8h}{h}$$

$$= \lim_{h \to 0} \frac{h(2a + h - 8)}{h}$$

$$= \lim_{h \to 0} (2a + h - 8)$$

Find the derivative of the function
$$f(x) = x^2 - 8x + 9$$
 at the number *a*.

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

$$= \lim_{h \to 0} \frac{[(a+h)^2 - 8(a+h) + 9] - [a^2 - 8a + 9]}{h}$$

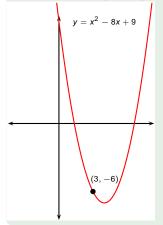
$$= \lim_{h \to 0} \frac{[a^2 + 2ah + h^2 - 8a - 8h + 9] - [a^2 - 8a + 9]}{h}$$

$$= \lim_{h \to 0} \frac{2ah + h^2 - 8h}{h}$$

$$= \lim_{h \to 0} \frac{h(2a+h-8)}{h}$$

$$= \lim_{h \to 0} (2a+h-8) = 2a - 8.$$

Find an equation for the tangent line to the parabola $y = x^2 - 8x + 9$ at the point P = (3, -6).



Find an equation for the tangent line to the parabola $y = x^2 - 8x + 9$ at the point P = (3, -6).

 $y = x^2 - 8x + 9$

• The slope of the tangent is the derivative *f*'(3).

Find an equation for the tangent line to the parabola $y = x^2 - 8x + 9$ at the point P = (3, -6).

 $y = x^2 - 8x + 9$

• The slope of the tangent is the derivative *f*'(3).

• From Example,
$$f'(a) = 2a - 8$$
.

Find an equation for the tangent line to the parabola $y = x^2 - 8x + 9$ at the point P = (3, -6).

- The slope of the tangent is the derivative *f*'(3).
 - From Example, f'(a) = 2a 8.
 - Therefore $f'(3) = 2 \cdot 3 8 = -2$.

 $y = x^2 - 8x + 9$

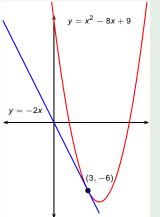
Find an equation for the tangent line to the parabola $y = x^2 - 8x + 9$ at the point P = (3, -6).

- The slope of the tangent is the derivative *f*'(3).
- From Example, f'(a) = 2a 8.
- Therefore $f'(3) = 2 \cdot 3 8 = -2$.
- Point-slope form:

$$y - (-6) = -2(x - 3).$$

 $y = x^2 - 8x + 9$

Find an equation for the tangent line to the parabola $y = x^2 - 8x + 9$ at the point P = (3, -6).



- The slope of the tangent is the derivative *f*'(3).
- From Example, f'(a) = 2a 8.
- Therefore $f'(3) = 2 \cdot 3 8 = -2$.
- Point-slope form:
 - y (-6) = -2(x 3).
- Slope *y*-intercept form: y = -2x.

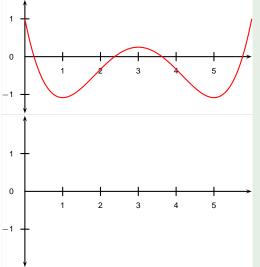
The Derivative as a Function

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

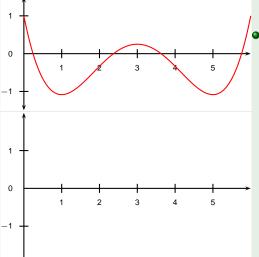
Now we change our point of view by letting the number a vary. If we replace the number a with the variable x, we get

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

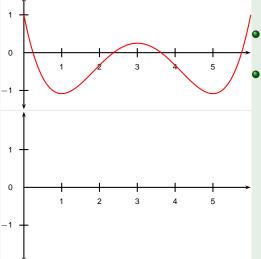
We regard f' as a new function, called the derivative of f. The domain of f' is $\{x|f'(x) \text{ exists }\}$. It may be smaller than the domain of f.



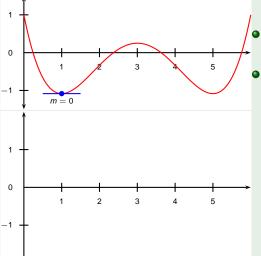
The graph of a function f appears below. Use it to sketch the graph of the derivative f'.



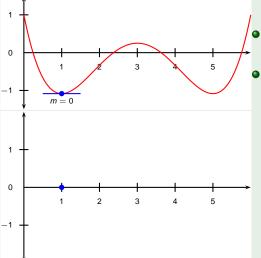
• Find the points where the tangent is horizontal (m = 0).



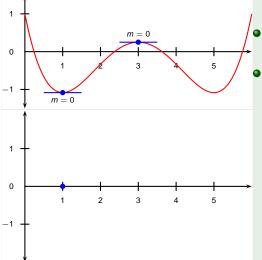
- Find the points where the tangent is horizontal (m = 0).
 - That is where f' is 0.



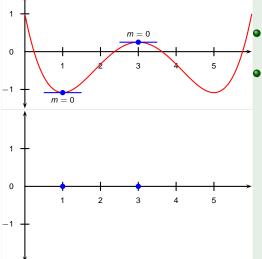
- Find the points where the tangent is horizontal (m = 0).
 - That is where f' is 0.



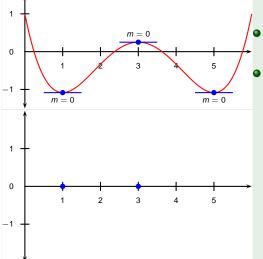
- Find the points where the tangent is horizontal (m = 0).
 - That is where f' is 0.



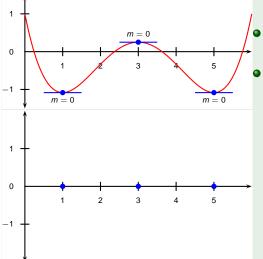
- Find the points where the tangent is horizontal (m = 0).
 - That is where f' is 0.



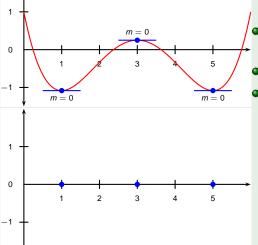
- Find the points where the tangent is horizontal (m = 0).
 - That is where f' is 0.



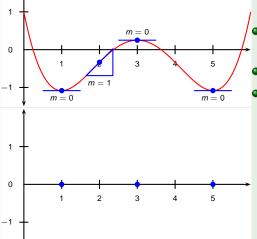
- Find the points where the tangent is horizontal (m = 0).
 - That is where f' is 0.



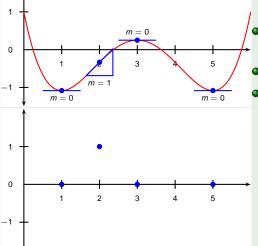
- Find the points where the tangent is horizontal (m = 0).
 - That is where f' is 0.



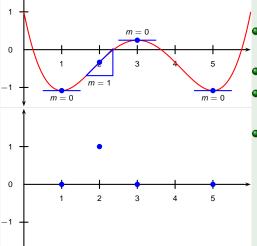
- Find the points where the tangent is horizontal (m = 0).
- That is where f' is 0.
- Where the slope of the tangent to f is 1, f' is 1.



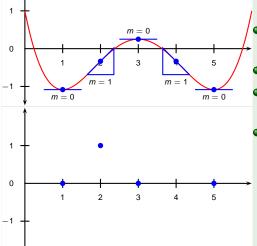
- Find the points where the tangent is horizontal (m = 0).
- That is where f' is 0.
- Where the slope of the tangent to f is 1, f' is 1.



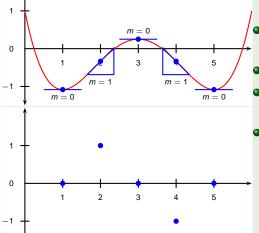
- Find the points where the tangent is horizontal (m = 0).
- That is where f' is 0.
- Where the slope of the tangent to f is 1, f' is 1.



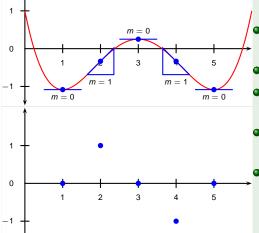
- Find the points where the tangent is horizontal (m = 0).
- That is where f' is 0.
- Where the slope of the tangent to f is 1, f' is 1.
- Where the slope of the tangent to f is -1, f' is -1.



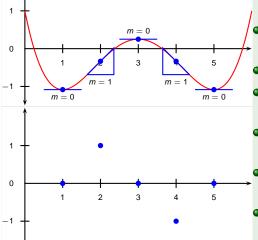
- Find the points where the tangent is horizontal (m = 0).
- That is where f' is 0.
- Where the slope of the tangent to f is 1, f' is 1.
- Where the slope of the tangent to f is -1, f' is -1.



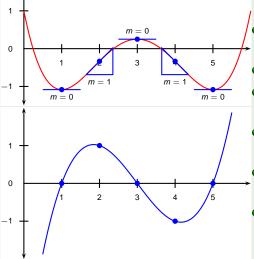
- Find the points where the tangent is horizontal (m = 0).
- That is where f' is 0.
- Where the slope of the tangent to f is 1, f' is 1.
- Where the slope of the tangent to f is -1, f' is -1.



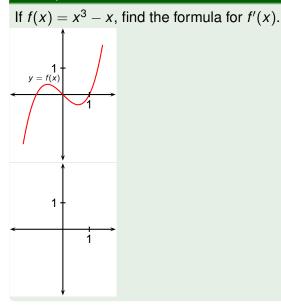
- Find the points where the tangent is horizontal (m = 0).
- That is where f' is 0.
- Where the slope of the tangent to f is 1, f' is 1.
- Where the slope of the tangent to f is -1, f' is -1.
- Where the slope of the curve is negative, *f*' is negative.

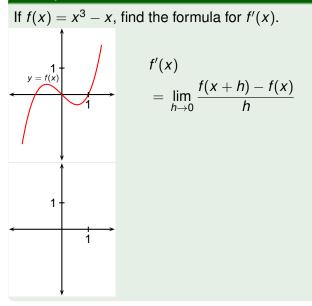


- Find the points where the tangent is horizontal (m = 0).
- That is where f' is 0.
- Where the slope of the tangent to f is 1, f' is 1.
- Where the slope of the tangent to f is -1, f' is -1.
- Where the slope of the curve is negative, *f*' is negative.
- Where the slope of the curve is positive, *f*' is positive.



- Find the points where the tangent is horizontal (m = 0).
- That is where f' is 0.
- Where the slope of the tangent to f is 1, f' is 1.
- Where the slope of the tangent to f is -1, f' is -1.
- Where the slope of the curve is negative, *f*' is negative.
- Where the slope of the curve is positive, *f*' is positive.





If $f(x) = x^3 - x$, find the formula for f'(x). f'(x)y = f(x) $= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{[(x+h)^3 - (x+h)] - [x^3 - x]}{h}$ 1

If $f(x) = x^3 - x$, find the formula for f'(x). f'(x)y = f(x) $= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{[(x+h)^3 - (x+h)] - [x^3 - x]}{h}$ $= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x - h - x^3 + x}{h^3 - x - h - x^3 + x}$ 1

If $f(x) = x^3 - x$, find the formula for f'(x). f'(x)y = f(x) $= \lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ $= \lim_{h \to 0} \frac{[(x+h)^3 - (x+h)] - [x^3 - x]}{h}$ $= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x - h - x^3 + x}{h}$ $= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3 - h}{h}$ 1

If $f(x) = x^3 - x$, find the formula for f'(x). f'(x)y = f(x) $= \lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{[(x+h)^3 - (x+h)] - [x^3 - x]}{h}$ $= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x - h - x^3 + x}{h}$ $h \rightarrow 0$ $= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3 - h}{h}$ 1 $= \lim_{h \to 0} (3x^2 + 3xh + h^2 - 1)$

If $f(x) = x^3 - x$, find the formula for f'(x). f'(x)v = f(x) $= \lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{[(x+h)^3 - (x+h)] - [x^3 - x]}{h}$ $= \lim_{h \to \infty} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x - h - x^3 + x}{h}$ $h \rightarrow 0$ $= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3 - h}{h}$ 1 $= \lim_{h \to 0} (3x^2 + 3xh + h^2 - 1)$ $= 3x^2 - 1$

If $f(x) = x^3 - x$, find the formula for f'(x). f'(x)y = f(x) $= \lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{[(x+h)^3 - (x+h)] - [x^3 - x]}{h}$ $= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x - h - x^3 + x}{h}$ $= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3 - h}{h}$ 1 $= \lim_{h \to 0} (3x^2 + 3xh + h^2 - 1)$ y = f(x) $= 3x^2 - 1$

Other Notations

If y = f(x) is a function, there are many ways to write its derivative.

$$f'(x) = y' = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}f(x) = Df(x) = D_x f(x)$$

- *D* and d/d*x* are called differentiation operators because they indicate the operation of differentiation, which is the process of calculating the derivative.
- dy/dx is called Leibniz notation, and should not be seen as a ratio; it just means the same as f'(x).
- If we want to indicate the value of the derivative dy/dx in Leibniz notation at a point a, we write

$$\left. \frac{\mathrm{d}y}{\mathrm{d}x} \right|_a$$
 or $\left. \frac{\mathrm{d}y}{\mathrm{d}x} \right]_a$