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(3.1) Differentiation Formulas General Power Functions

Theorem (The Power Rule (General Version))
If n is any real number, then

d
dx

(xn) = nxn−1.
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(3.1) Differentiation Formulas General Power Functions

Example (Power Rule, negative exponent)

Differentiate y =
1
x
.

y = x−1.

Power Rule:
dy
dx

=

(−1)x−2

= − 1
x2 .
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(3.1) Differentiation Formulas General Power Functions

Example (Calculating the tangent line using the Power Rule)
Find an equation for the tangent line to the parabola y = 3

√
x at the

point P = (1,1).

y = 3√x

(1, 1)

Here a = 1 and f (x) = 3
√

x = x
1
3 .

f ′(x) =
1
3

x
1
3−1

=
1
3

x
−2
3

=
1

3 3
√

x2
.

f ′(1) =
1
3
.

Point-slope form: y − 1 = 1
3(x − 1), or

y = 1
3x + 2

3 .
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(3.1) Differentiation Formulas The Constant Multiple Rule

Theorem (The Constant Multiple Rule)
If c is a constant and f is a differentiable function, then

d
dx

[cf (x)] = c
d

dx
f (x).

Proof.

Let g(x) = cf (x).

Then g′(x) = lim
h→0

g(x + h)− g(x)
h

= lim
h→0

cf (x + h)− cf (x)
h

= lim
h→0

c(f (x + h)− f (x))
h

Limit Law 3: = c lim
h→0

f (x + h)− f (x)
h

= c

f ′(x).
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(3.1) Differentiation Formulas The Constant Multiple Rule

Example (Constant Multiple Rule, Power Rule)

Find the derivative of y =
2x5

7
.

y =

(
2
7

)(
x5) .

dy
dx

=
d

dx

[(
2
7

)(
x5)]

Constant Multiple Rule: =

(
2
7

)
d

dx
(
x5)

=

(
2
7

) (

5x4

)
=

10x4

7
.
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(3.1) Differentiation Formulas The Constant Multiple Rule

Example (Constant Multiple Rule, Power Rule)

Find the derivative of u = −x .

u = (−1) (x) .
du
dx

=
d

dx
[ (−1) (x)]

Constant Multiple Rule: = (−1)
d

dx
(x)

= (−1) (

1

)

= −1.
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(3.1) Differentiation Formulas The Constant Multiple Rule

Example (Constant Multiple Rule, Power Rule, Negative
Exponent)

Find the derivative of t =
2π
x4 .

t = (2π)
(

x−4
)
.

dt
dx

=
d

dx

[
(2π)

(
x−4

)]
Constant Multiple Rule: = (2π)

d
dx

(
x−4

)
= (2π)

(

− 4x−5

)
= −8π

x5 .
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(3.1) Differentiation Formulas The Sum and Difference Rules

Theorem (The Sum Rule)
If f and g are both differentiable, then

d
dx

[f (x) + g(x)] =
d

dx
f (x) +

d
dx

g(x).

Proof.

Let F (x) = f (x) + g(x).

Then F ′(x) = lim
h→0

F (x + h)− F (x)
h

= lim
h→0

[f (x + h) + g(x + h)]− [f (x) + g(x)]
h

= lim
h→0

[
f (x + h)− f (x)

h
+

g(x + h)− g(x)
h

]
Limit Law 1: = lim

h→0

f (x + h)− f (x)
h

+ lim
h→0

g(x + h)− g(x)
h

= f ′(x) + g′(x).
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(3.1) Differentiation Formulas The Sum and Difference Rules

The Sum Rule can be extended to any number of summands. For
instance, using the theorem twice, we get

(f + g + h)′ = [(f + g) + h]′ = (f + g)′ + h′ = f ′ + g′ + h′.

By writing f − g as f + (−1)g and applying the Sum Rule and the
Constant Multiple Rule, we get

Theorem (The Difference Rule)
If f and g are both differentiable, then

d
dx

[f (x)− g(x)] =
d

dx
f (x)− d

dx
g(x).
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(3.1) Differentiation Formulas The Sum and Difference Rules

The Constant Multiple Rule, the Sum Rule, the Difference Rule, and
the Power Rule can be combined to differentiate any polynomial.

Example (Derivative of a Polynomial)

If y = x16 + 2
√

3x7 − 4x3 +
x
8
− 5,

Then
dy
dx

=

d
dx

(
x16 + 2

√
3x7 − 4x3 +

x
8
− 5
)

=
d

dx

(
x16
)
+

d
dx

(
2
√

3x7
)
− d

dx

(
4x3

)
+

d
dx

(x
8

)
− d

dx
(5)

=
d

dx

(
x16
)
+ 2
√

3
d

dx
(
x7)− 4

d
dx

(
x3
)
+

1
8

d
dx

(x)− d
dx

(5)

= (

16x15

) + 2
√

3
(

7x6

)
− 4

(

3x2

)
+

1
8
(

1

) − (

0

)

= 16x15 + 14
√

3x6 − 12x2 +
1
8
.
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(3.1) Differentiation Formulas The Sum and Difference Rules

Example (Difference Rule, Negative Fractional Exponents)

Differentiate v =
3
√

x − 3
√

x
x

.

v = 3
√

x
x
−

3
√

x
x

v = 3

x−1/2

−

x−2/3.

Difference Rule:
dv
dx

=
d

dx
(3x−1/2)− d

dx
(x−2/3)

Constant Multiple Rule: = 3
d

dx
(x−1/2)− d

dx
(x−2/3)

Power Rule: = 3
(

− 1
2

x−3/2

)
−
(

− 2
3

x−5/3

)
=

2
3

x−5/3 − 3
2

x−3/2.
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(3.1) Differentiation Formulas Derivatives of Exponential Functions

Derivatives of Exponential Functions

Compute the derivative of f (x) = ax using the definition:

f ′(x) = lim
h→0

f (x + h)− f (x)
h

= lim
h→0

ax+h − ax

h

= lim
h→0

axah − ax

h

= lim
h→0

ax(ah − 1)
h

= ax lim
h→0

ah − 1
h

= ax f ′(0).
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(3.1) Differentiation Formulas Derivatives of Exponential Functions

We have shown that, if f (x) = ax is differentiable at 0, then it is
differentiable everywhere, and

f ′(x) = f ′(0)ax .

It is a fact that, for all positive a, the limit limh→0
ah−1

h exists (we will not
prove this). Approximations for a = 2 and a = 3 appear below.

lim
h→0

2h − 1
h

≈ 0.693147, lim
h→0

3h − 1
h

≈ 1.098612.

Then the derivative of f (x) = ax exists for all positive a.
Approximations for a = 2 and a = 3 appear below.

d
dx

(2x) ≈ (0.69)2x ,
d

dx
(3x) ≈ (1.10)3x .
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(3.1) Differentiation Formulas Derivatives of Exponential Functions

If f (x) = ax , then f ′(x) = f ′(0)ax .

The simplest differential formula occurs when f ′(0) = 1. Since
limh→0

2h−1
h ≈ 0.69 and limh→0

3h−1
h ≈ 1.10, we expect there is a

number a between 2 and 3 such that limh→0
ah−1

h = 1.

Definition (e)

e is the number such that limh→0
eh−1

h = 1.

y = 2x

m ≈ 0.693147

y = ex

m = 1

y = 3x

m ≈ 1.09861
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(3.1) Differentiation Formulas Derivatives of Exponential Functions

Definition (Natural Exponential Function)
ex is called the natural exponential function. Its derivative is

d
dx

ex = ex .
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(3.1) Differentiation Formulas Derivatives of Exponential Functions

Example (Derivative of a Polynomial and the Natural Exponential
Function)

Differentiate y = ex + x7.

dy
dx

=
d

dx
(ex) +

d
dx

(x7)

=

ex

+

7x6.
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