Math 140 Lecture 11

Greg Maloney

with modifications by T. Milev

University of Massachusetts Boston

March 12, 2013

(3.1) Differentiation Formulas

- General Power Functions
- The Constant Multiple Rule
- The Sum and Difference Rules
- Derivatives of Exponential Functions

Theorem (The Power Rule (General Version))

If n is any real number, then

$$\frac{d}{dx}(x^n)=nx^{n-1}.$$

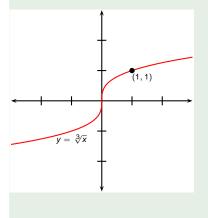
Differentiate
$$y = \frac{1}{x}$$
.

Differentiate
$$y = \frac{1}{x}$$
.
 $y = x^{-1}$.

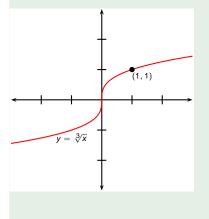
Differentiate
$$y = \frac{1}{x}$$
.
 $y = x^{-1}$.
Power Rule: $\frac{dy}{dx} =$

Differentiate
$$y = \frac{1}{x}$$
.
 $y = x^{-1}$.
Power Rule: $\frac{dy}{dx} = (-1)x^{-2}$

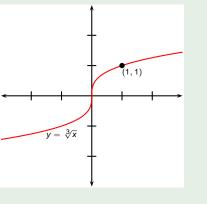
Differentiate
$$y = \frac{1}{x}$$
.
 $y = x^{-1}$.
Power Rule: $\frac{dy}{dx} = (-1)x^{-2}$
 $= -\frac{1}{x^2}$.



Here *a* = 1 and
$$f(x) = \sqrt[3]{x} = x^{\frac{1}{3}}$$
.

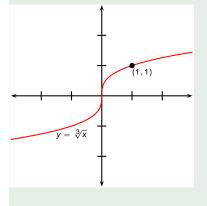


Here
$$a = 1$$
 and $f(x) = \sqrt[3]{x} = x^{\frac{1}{3}}$.



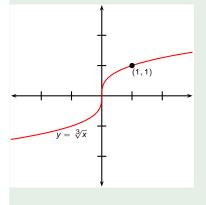
$$f'(x) = \frac{1}{3}x^{\frac{1}{3}-1}$$

Here
$$a = 1$$
 and $f(x) = \sqrt[3]{x} = x^{\frac{1}{3}}$

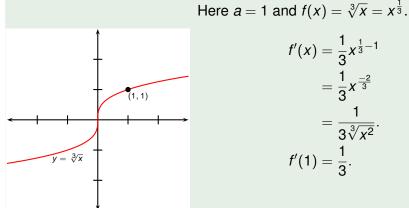


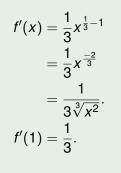
$$f'(x) = rac{1}{3}x^{rac{1}{3}-1} = rac{1}{3}x^{rac{-2}{3}}$$

Here
$$a = 1$$
 and $f(x) = \sqrt[3]{x} = x^{\frac{1}{3}}$.



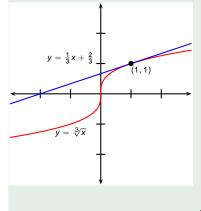
$$\begin{aligned} x'(x) &= \frac{1}{3}x^{\frac{1}{3}-1} \\ &= \frac{1}{3}x^{\frac{-2}{3}} \\ &= \frac{1}{3\sqrt[3]{x^2}}. \end{aligned}$$

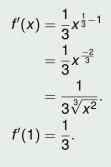




Find an equation for the tangent line to the parabola $y = \sqrt[3]{x}$ at the point P = (1, 1).

Here
$$a = 1$$
 and $f(x) = \sqrt[3]{x} = x^{\frac{1}{3}}$.





Point-slope form: $y - 1 = \frac{1}{3}(x - 1)$, or $y = \frac{1}{3}x + \frac{2}{3}$.

If c is a constant and f is a differentiable function, then $\frac{d}{dx}[cf(x)] = c\frac{d}{dx}f(x).$

If c is a constant and f is a differentiable function, then $\frac{d}{dx}[cf(x)] = c\frac{d}{dx}f(x).$

Let
$$g(x) = cf(x)$$
.

If c is a constant and f is a differentiable function, then $\frac{d}{dx}[cf(x)] = c\frac{d}{dx}f(x).$

Let
$$g(x) = cf(x)$$
.
Then $g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$

If c is a constant and f is a differentiable function, then $\frac{d}{dx}[cf(x)] = c\frac{d}{dx}f(x).$

Let
$$g(x) = cf(x)$$
.
Then $g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$
 $= \lim_{h \to 0} \frac{cf(x+h) - cf(x)}{h}$

If c is a constant and f is a differentiable function, then $\frac{d}{dx}[cf(x)] = c\frac{d}{dx}f(x).$

Let
$$g(x) = cf(x)$$
.
Then $g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$
 $= \lim_{h \to 0} \frac{cf(x+h) - cf(x)}{h}$
 $= \lim_{h \to 0} \frac{c(f(x+h) - f(x))}{h}$

If c is a constant and f is a differentiable function, then $\frac{d}{dx}[cf(x)] = c\frac{d}{dx}f(x).$

Let
$$g(x) = cf(x)$$
.
Then $g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$
 $= \lim_{h \to 0} \frac{cf(x+h) - cf(x)}{h}$
 $= \lim_{h \to 0} \frac{c(f(x+h) - f(x))}{h}$
Limit Law 3: $= c \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

If c is a constant and f is a differentiable function, then $\frac{d}{dx}[cf(x)] = c\frac{d}{dx}f(x).$

Let
$$g(x) = cf(x)$$
.
Then $g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$
 $= \lim_{h \to 0} \frac{cf(x+h) - cf(x)}{h}$
 $= \lim_{h \to 0} \frac{c(f(x+h) - f(x))}{h}$
Limit Law 3: $= c \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
 $= c$

If c is a constant and f is a differentiable function, then $\frac{d}{dx}[cf(x)] = c\frac{d}{dx}f(x).$

Proof.

Let
$$g(x) = cf(x)$$
.
Then $g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$
 $= \lim_{h \to 0} \frac{cf(x+h) - cf(x)}{h}$
 $= \lim_{h \to 0} \frac{c(f(x+h) - f(x))}{h}$
Limit Law 3: $= c \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
 $= cf'(x)$.

FreeCalc Math 140

Find the derivative of $y = \frac{2x^5}{7}$.

Find the derivative of
$$y = \frac{2x^5}{7}$$
.
 $y = \left(\frac{2}{7}\right)(x^5)$.

Find the derivative of $y = \frac{2x^5}{7}$. $y = \left(\frac{2}{7}\right)(x^5)$. $\frac{dy}{dx} = \frac{d}{dx}\left[\left(\frac{2}{7}\right)(x^5)\right]$

Find the derivative of
$$y = \frac{2x^5}{7}$$
.
 $y = \left(\frac{2}{7}\right)(x^5)$.
 $\frac{dy}{dx} = \frac{d}{dx}\left[\left(\frac{2}{7}\right)(x^5)\right]$
Constant Multiple Rule: $= \left(\frac{2}{7}\right)\frac{d}{dx}(x^5)$

Find the derivative of
$$y = \frac{2x^5}{7}$$
.
 $y = \left(\frac{2}{7}\right)(x^5)$.
 $\frac{dy}{dx} = \frac{d}{dx}\left[\left(\frac{2}{7}\right)(x^5)\right]$
Constant Multiple Rule: $= \left(\frac{2}{7}\right)\frac{d}{dx}(x^5)$
 $= \left(\frac{2}{7}\right)\left($

Find the derivative of
$$y = \frac{2x^5}{7}$$
.
 $y = \left(\frac{2}{7}\right)(x^5)$.
 $\frac{dy}{dx} = \frac{d}{dx}\left[\left(\frac{2}{7}\right)(x^5)\right]$
Constant Multiple Rule: $= \left(\frac{2}{7}\right)\frac{d}{dx}(x^5)$
 $= \left(\frac{2}{7}\right)(5x^4)$

Find the derivative of
$$y = \frac{2x^5}{7}$$
.
 $y = \left(\frac{2}{7}\right)(x^5)$.
 $\frac{dy}{dx} = \frac{d}{dx}\left[\left(\frac{2}{7}\right)(x^5)\right]$
Constant Multiple Rule: $= \left(\frac{2}{7}\right)\frac{d}{dx}(x^5)$
 $= \left(\frac{2}{7}\right)\left(5x^4\right)$
 $= \frac{10x^4}{7}$.

Find the derivative of u = -x.

Find the derivative of u = -x. u = (-1)(x).

Find the derivative of u = -x. u = (-1)(x). $\frac{du}{dx} = \frac{d}{dx}[(-1)(x)]$

Find the derivative of
$$u = -x$$
.
 $u = (-1)(x)$.
 $\frac{du}{dx} = \frac{d}{dx} [(-1)(x)]$
Constant Multiple Rule: $= (-1) \frac{d}{dx}(x)$

Find the derivative of
$$u = -x$$
.
 $u = (-1)(x)$.
 $\frac{du}{dx} = \frac{d}{dx}[(-1)(x)]$
Constant Multiple Rule: $= (-1)\frac{d}{dx}(x)$
 $= (-1)()$

Find the derivative of
$$u = -x$$
.
 $u = (-1)(x)$.
 $\frac{du}{dx} = \frac{d}{dx}[(-1)(x)]$
Constant Multiple Rule: $= (-1)\frac{d}{dx}(x)$
 $= (-1)(1)$

Example (Constant Multiple Rule, Power Rule)

Find the derivative of
$$u = -x$$
.
 $u = (-1)(x)$.
 $\frac{du}{dx} = \frac{d}{dx} [(-1)(x)]$
Constant Multiple Rule: $= (-1) \frac{d}{dx} (x)$
 $= (-1) (1)$
 $= -1$.

Find the derivative of
$$t = \frac{2\pi}{x^4}$$
.

Find the derivative of
$$t = rac{2\pi}{x^4}$$
.
 $t = (2\pi) \left(x^{-4} \right)$.

Find the derivative of
$$t = \frac{2\pi}{x^4}$$
.
 $t = (2\pi) \left(x^{-4}\right)$.
 $\frac{dt}{dx} = \frac{d}{dx} \left[(2\pi) \left(x^{-4}\right) \right]$

Find the derivative of
$$t = \frac{2\pi}{x^4}$$
.
 $t = (2\pi) \left(x^{-4}\right)$.
 $\frac{dt}{dx} = \frac{d}{dx} \left[(2\pi) \left(x^{-4}\right) \right]$
Constant Multiple Rule: $= (2\pi) \frac{d}{dx} \left(x^{-4}\right)$

Find the derivative of
$$t = \frac{2\pi}{x^4}$$
.
 $t = (2\pi) \left(x^{-4}\right)$.
 $\frac{dt}{dx} = \frac{d}{dx} \left[(2\pi) \left(x^{-4}\right) \right]$
Constant Multiple Rule: $= (2\pi) \frac{d}{dx} \left(x^{-4}\right)$
 $= (2\pi) \left($

Find the derivative of
$$t = \frac{2\pi}{x^4}$$
.
 $t = (2\pi) \left(x^{-4}\right)$.
 $\frac{dt}{dx} = \frac{d}{dx} \left[(2\pi) \left(x^{-4}\right) \right]$
Constant Multiple Rule: $= (2\pi) \frac{d}{dx} \left(x^{-4}\right)$
 $= (2\pi) \left(-4x^{-5}\right)$

Find the derivative of
$$t = \frac{2\pi}{x^4}$$
.
 $t = (2\pi) \left(x^{-4}\right)$.
 $\frac{dt}{dx} = \frac{d}{dx} \left[(2\pi) \left(x^{-4}\right) \right]$
Constant Multiple Rule: $= (2\pi) \frac{d}{dx} \left(x^{-4}\right)$
 $= (2\pi) \left(-4x^{-5}\right)$
 $= -\frac{8\pi}{x^5}$.

If f and g are both differentiable, then $\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x).$

If f and g are both differentiable, then $\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x).$

Let
$$F(x) = f(x) + g(x)$$
.

If f and g are both differentiable, then $\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x).$

Let
$$F(x) = f(x) + g(x)$$
.
Then $F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$

If f and g are both differentiable, then $\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x).$

Let
$$F(x) = f(x) + g(x)$$
.
Then $F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$
 $= \lim_{h \to 0} \frac{[f(x+h) + g(x+h)] - [f(x) + g(x)]}{h}$

If f and g are both differentiable, then $\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x).$

Proof.

Let
$$F(x) = f(x) + g(x)$$
.
Then $F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$
 $= \lim_{h \to 0} \frac{[f(x+h) + g(x+h)] - [f(x) + g(x)]}{h}$
 $= \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h} \right]$

FreeCalc Math 140

If f and g are both differentiable, then $\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x).$

Let
$$F(x) = f(x) + g(x)$$
.
Then $F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$
 $= \lim_{h \to 0} \frac{[f(x+h) + g(x+h)] - [f(x) + g(x)]}{h}$
 $= \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h} \right]$

If f and g are both differentiable, then $\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x).$

Let
$$F(x) = f(x) + g(x)$$
.
Then $F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$
 $= \lim_{h \to 0} \frac{[f(x+h) + g(x+h)] - [f(x) + g(x)]}{h}$
 $= \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h} \right]$

If f and g are both differentiable, then $\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x).$

Let
$$F(x) = f(x) + g(x)$$
.
Then $F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$
 $= \lim_{h \to 0} \frac{[f(x+h) + g(x+h)] - [f(x) + g(x)]}{h}$
 $= \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h} \right]$
Limit Law 1: $= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$

If f and g are both differentiable, then $\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x).$

Let
$$F(x) = f(x) + g(x)$$
.
Then $F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$
 $= \lim_{h \to 0} \frac{[f(x+h) + g(x+h)] - [f(x) + g(x)]}{h}$
 $= \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h}\right]$
Limit Law 1: $= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$
 $= f'(x) + g'(x)$.

The Sum Rule can be extended to any number of summands. For instance, using the theorem twice, we get

$$(f+g+h)' = [(f+g)+h]' = (f+g)'+h' = f'+g'+h'.$$

The Sum Rule can be extended to any number of summands. For instance, using the theorem twice, we get

$$(f + g + h)' = [(f + g) + h]' = (f + g)' + h' = f' + g' + h'.$$

By writing f - g as f + (-1)g and applying the Sum Rule and the Constant Multiple Rule, we get

Theorem (The Difference Rule)

If f and g are both differentiable, then

$$\frac{d}{dx}[f(x)-g(x)]=\frac{d}{dx}f(x)-\frac{d}{dx}g(x).$$

If
$$y = x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5$$
,
Then $\frac{dy}{dx} =$

If
$$y = x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5$$
,
Then $\frac{dy}{dx} = \frac{d}{dx} \left(x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5 \right)$

If
$$y = x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5$$
,
Then $\frac{dy}{dx} = \frac{d}{dx} \left(x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5 \right)$
 $= \frac{d}{dx} \left(x^{16} \right) + \frac{d}{dx} \left(2\sqrt{3}x^7 \right) - \frac{d}{dx} \left(4x^3 \right) + \frac{d}{dx} \left(\frac{x}{8} \right) - \frac{d}{dx} (5)$

If
$$y = x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5$$
,
Then $\frac{dy}{dx} = \frac{d}{dx} \left(x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5 \right)$
 $= \frac{d}{dx} \left(x^{16} \right) + \frac{d}{dx} \left(2\sqrt{3}x^7 \right) - \frac{d}{dx} \left(4x^3 \right) + \frac{d}{dx} \left(\frac{x}{8} \right) - \frac{d}{dx} (5)$
 $= \frac{d}{dx} \left(x^{16} \right) + 2\sqrt{3} \frac{d}{dx} \left(x^7 \right) - 4 \frac{d}{dx} \left(x^3 \right) + \frac{1}{8} \frac{d}{dx} \left(x \right) - \frac{d}{dx} (5)$

If
$$y = x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5$$
,
Then $\frac{dy}{dx} = \frac{d}{dx} \left(x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5 \right)$
 $= \frac{d}{dx} \left(x^{16} \right) + \frac{d}{dx} \left(2\sqrt{3}x^7 \right) - \frac{d}{dx} \left(4x^3 \right) + \frac{d}{dx} \left(\frac{x}{8} \right) - \frac{d}{dx} (5)$
 $= \frac{d}{dx} \left(x^{16} \right) + 2\sqrt{3} \frac{d}{dx} \left(x^7 \right) - 4 \frac{d}{dx} \left(x^3 \right) + \frac{1}{8} \frac{d}{dx} \left(x \right) - \frac{d}{dx} (5)$
 $= () + 2\sqrt{3} \left() - 4 \left() + \frac{1}{8} () - () \right)$

If
$$y = x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5$$
,
Then $\frac{dy}{dx} = \frac{d}{dx} \left(x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5 \right)$
 $= \frac{d}{dx} \left(x^{16} \right) + \frac{d}{dx} \left(2\sqrt{3}x^7 \right) - \frac{d}{dx} \left(4x^3 \right) + \frac{d}{dx} \left(\frac{x}{8} \right) - \frac{d}{dx} (5)$
 $= \frac{d}{dx} \left(x^{16} \right) + 2\sqrt{3} \frac{d}{dx} \left(x^7 \right) - 4 \frac{d}{dx} \left(x^3 \right) + \frac{1}{8} \frac{d}{dx} \left(x \right) - \frac{d}{dx} (5)$
 $= (16x^{15}) + 2\sqrt{3} \left(\right) - 4 \left(\right) + \frac{1}{8} \left(\right) - ()$

If
$$y = x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5$$
,
Then $\frac{dy}{dx} = \frac{d}{dx} \left(x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5 \right)$
 $= \frac{d}{dx} \left(x^{16} \right) + \frac{d}{dx} \left(2\sqrt{3}x^7 \right) - \frac{d}{dx} \left(4x^3 \right) + \frac{d}{dx} \left(\frac{x}{8} \right) - \frac{d}{dx} (5)$
 $= \frac{d}{dx} \left(x^{16} \right) + 2\sqrt{3} \frac{d}{dx} \left(x^7 \right) - 4 \frac{d}{dx} \left(x^3 \right) + \frac{1}{8} \frac{d}{dx} \left(x \right) - \frac{d}{dx} (5)$
 $= (16x^{15}) + 2\sqrt{3} \left(\right) - 4 \left(\right) + \frac{1}{8} \left(\right) - \left(\right)$

If
$$y = x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5$$
,
Then $\frac{dy}{dx} = \frac{d}{dx} \left(x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5 \right)$
 $= \frac{d}{dx} \left(x^{16} \right) + \frac{d}{dx} \left(2\sqrt{3}x^7 \right) - \frac{d}{dx} \left(4x^3 \right) + \frac{d}{dx} \left(\frac{x}{8} \right) - \frac{d}{dx} (5)$
 $= \frac{d}{dx} \left(x^{16} \right) + 2\sqrt{3} \frac{d}{dx} \left(x^7 \right) - 4 \frac{d}{dx} \left(x^3 \right) + \frac{1}{8} \frac{d}{dx} \left(x \right) - \frac{d}{dx} (5)$
 $= (16x^{15}) + 2\sqrt{3} \left(7x^6 \right) - 4 \left(\right) + \frac{1}{8} \left(\right) - \left(\right)$

If
$$y = x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5$$
,
Then $\frac{dy}{dx} = \frac{d}{dx} \left(x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5 \right)$
 $= \frac{d}{dx} \left(x^{16} \right) + \frac{d}{dx} \left(2\sqrt{3}x^7 \right) - \frac{d}{dx} \left(4x^3 \right) + \frac{d}{dx} \left(\frac{x}{8} \right) - \frac{d}{dx} (5)$
 $= \frac{d}{dx} \left(x^{16} \right) + 2\sqrt{3} \frac{d}{dx} \left(x^7 \right) - 4 \frac{d}{dx} \left(x^3 \right) + \frac{1}{8} \frac{d}{dx} \left(x \right) - \frac{d}{dx} (5)$
 $= (16x^{15}) + 2\sqrt{3} \left(7x^6 \right) - 4 \left(\right) + \frac{1}{8} \left(\right) - \left(\right)$

If
$$y = x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5$$
,
Then $\frac{dy}{dx} = \frac{d}{dx} \left(x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5 \right)$
 $= \frac{d}{dx} \left(x^{16} \right) + \frac{d}{dx} \left(2\sqrt{3}x^7 \right) - \frac{d}{dx} \left(4x^3 \right) + \frac{d}{dx} \left(\frac{x}{8} \right) - \frac{d}{dx} (5)$
 $= \frac{d}{dx} \left(x^{16} \right) + 2\sqrt{3} \frac{d}{dx} \left(x^7 \right) - 4 \frac{d}{dx} \left(x^3 \right) + \frac{1}{8} \frac{d}{dx} \left(x \right) - \frac{d}{dx} (5)$
 $= (16x^{15}) + 2\sqrt{3} \left(7x^6 \right) - 4 \left(3x^2 \right) + \frac{1}{8} () - ()$

If
$$y = x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5$$
,
Then $\frac{dy}{dx} = \frac{d}{dx} \left(x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5 \right)$
 $= \frac{d}{dx} \left(x^{16} \right) + \frac{d}{dx} \left(2\sqrt{3}x^7 \right) - \frac{d}{dx} \left(4x^3 \right) + \frac{d}{dx} \left(\frac{x}{8} \right) - \frac{d}{dx} (5)$
 $= \frac{d}{dx} \left(x^{16} \right) + 2\sqrt{3} \frac{d}{dx} \left(x^7 \right) - 4 \frac{d}{dx} \left(x^3 \right) + \frac{1}{8} \frac{d}{dx} \left(x \right) - \frac{d}{dx} (5)$
 $= (16x^{15}) + 2\sqrt{3} \left(7x^6 \right) - 4 \left(3x^2 \right) + \frac{1}{8} \left(\right) - ($

If
$$y = x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5$$
,
Then $\frac{dy}{dx} = \frac{d}{dx} \left(x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5 \right)$
 $= \frac{d}{dx} \left(x^{16} \right) + \frac{d}{dx} \left(2\sqrt{3}x^7 \right) - \frac{d}{dx} \left(4x^3 \right) + \frac{d}{dx} \left(\frac{x}{8} \right) - \frac{d}{dx} (5)$
 $= \frac{d}{dx} \left(x^{16} \right) + 2\sqrt{3} \frac{d}{dx} \left(x^7 \right) - 4 \frac{d}{dx} \left(x^3 \right) + \frac{1}{8} \frac{d}{dx} \left(x \right) - \frac{d}{dx} (5)$
 $= (16x^{15}) + 2\sqrt{3} \left(7x^6 \right) - 4 \left(3x^2 \right) + \frac{1}{8} (1) - ()$

If
$$y = x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5$$
,
Then $\frac{dy}{dx} = \frac{d}{dx} \left(x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5 \right)$
 $= \frac{d}{dx} \left(x^{16} \right) + \frac{d}{dx} \left(2\sqrt{3}x^7 \right) - \frac{d}{dx} \left(4x^3 \right) + \frac{d}{dx} \left(\frac{x}{8} \right) - \frac{d}{dx} (5)$
 $= \frac{d}{dx} \left(x^{16} \right) + 2\sqrt{3} \frac{d}{dx} \left(x^7 \right) - 4 \frac{d}{dx} \left(x^3 \right) + \frac{1}{8} \frac{d}{dx} \left(x \right) - \frac{d}{dx} (5)$
 $= (16x^{15}) + 2\sqrt{3} \left(7x^6 \right) - 4 \left(3x^2 \right) + \frac{1}{8} (1) - ()$

If
$$y = x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5$$
,
Then $\frac{dy}{dx} = \frac{d}{dx} \left(x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5 \right)$
 $= \frac{d}{dx} \left(x^{16} \right) + \frac{d}{dx} \left(2\sqrt{3}x^7 \right) - \frac{d}{dx} \left(4x^3 \right) + \frac{d}{dx} \left(\frac{x}{8} \right) - \frac{d}{dx} (5)$
 $= \frac{d}{dx} \left(x^{16} \right) + 2\sqrt{3} \frac{d}{dx} \left(x^7 \right) - 4 \frac{d}{dx} \left(x^3 \right) + \frac{1}{8} \frac{d}{dx} \left(x \right) - \frac{d}{dx} (5)$
 $= (16x^{15}) + 2\sqrt{3} \left(7x^6 \right) - 4 \left(3x^2 \right) + \frac{1}{8} (1) - (0)$

If
$$y = x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5$$
,
Then $\frac{dy}{dx} = \frac{d}{dx} \left(x^{16} + 2\sqrt{3}x^7 - 4x^3 + \frac{x}{8} - 5 \right)$
 $= \frac{d}{dx} \left(x^{16} \right) + \frac{d}{dx} \left(2\sqrt{3}x^7 \right) - \frac{d}{dx} \left(4x^3 \right) + \frac{d}{dx} \left(\frac{x}{8} \right) - \frac{d}{dx} (5)$
 $= \frac{d}{dx} \left(x^{16} \right) + 2\sqrt{3} \frac{d}{dx} \left(x^7 \right) - 4 \frac{d}{dx} \left(x^3 \right) + \frac{1}{8} \frac{d}{dx} \left(x \right) - \frac{d}{dx} (5)$
 $= (16x^{15}) + 2\sqrt{3} \left(7x^6 \right) - 4 \left(3x^2 \right) + \frac{1}{8} (1) - (0)$
 $= 16x^{15} + 14\sqrt{3}x^6 - 12x^2 + \frac{1}{8}.$

Example (Difference Rule, Negative Fractional Exponents)

Differentiate
$$v = \frac{3\sqrt{x} - \sqrt[3]{x}}{x}$$

Example (Difference Rule, Negative Fractional Exponents)

Differentiate
$$v = \frac{3\sqrt{x} - \sqrt[3]{x}}{x}$$
.
 $v = 3\frac{\sqrt{x}}{x} - \frac{\sqrt[3]{x}}{x}$

Differentiate
$$v = \frac{3\sqrt{x} - \sqrt[3]{x}}{x}$$
.
 $v = 3\frac{\sqrt{x}}{x} - \frac{\sqrt[3]{x}}{x}$.
 $v = 3$ -

Differentiate
$$v = \frac{3\sqrt{x} - \sqrt[3]{x}}{x}$$
.
 $v = 3\frac{\sqrt{x}}{x} - \frac{\sqrt[3]{x}}{x}$.
 $v = 3x^{-1/2} -$

Differentiate
$$v = \frac{3\sqrt{x} - \sqrt[3]{x}}{x}$$
.
 $v = 3\frac{\sqrt{x}}{x} - \frac{\sqrt[3]{x}}{x}$.
 $v = 3x^{-1/2} -$

Differentiate
$$v = \frac{3\sqrt{x} - \sqrt[3]{x}}{x}$$
.
 $v = 3\frac{\sqrt{x}}{x} - \frac{\sqrt[3]{x}}{x}$.
 $v = 3x^{-1/2} - \frac{x^{-2/3}}{x}$

Differentiate
$$v = \frac{3\sqrt{x} - \sqrt[3]{x}}{x}$$
.
 $v = 3\frac{\sqrt{x}}{x} - \frac{\sqrt[3]{x}}{x}$.
 $v = 3x^{-1/2} - x^{-2/3}$.
fference Rule: $\frac{dv}{dx} = \frac{d}{dx}(3x^{-1/2}) - \frac{d}{dx}(x^{-2/3})$.

Di

Differentiate
$$v = \frac{3\sqrt{x} - \sqrt[3]{x}}{x}$$
.
 $v = 3\frac{\sqrt{x}}{x} - \frac{\sqrt[3]{x}}{x}$
 $v = 3x^{-1/2} - x^{-2/3}$.
Difference Rule: $\frac{dv}{dx} = \frac{d}{dx}(3x^{-1/2}) - \frac{d}{dx}(x^{-2/3})$
constant Multiple Rule: $= 3\frac{d}{dx}(x^{-1/2}) - \frac{d}{dx}(x^{-2/3})$

C

Differentiate
$$v = \frac{3\sqrt{x} - \sqrt[3]{x}}{x}$$
.
 $v = 3\frac{\sqrt{x}}{x} - \frac{\sqrt[3]{x}}{x}$
 $v = 3x^{-1/2} - x^{-2/3}$.
Difference Rule: $\frac{dv}{dx} = \frac{d}{dx}(3x^{-1/2}) - \frac{d}{dx}(x^{-2/3})$
Constant Multiple Rule: $= 3\frac{d}{dx}(x^{-1/2}) - \frac{d}{dx}(x^{-2/3})$
Power Rule: $= 3\left(\qquad \right) - \left(\qquad \right)$

Differentiate
$$v = \frac{3\sqrt{x} - \sqrt[3]{x}}{x}$$
.
 $v = 3\frac{\sqrt{x}}{x} - \frac{\sqrt[3]{x}}{x}$
 $v = 3x^{-1/2} - x^{-2/3}$.
Difference Rule: $\frac{dv}{dx} = \frac{d}{dx}(3x^{-1/2}) - \frac{d}{dx}(x^{-2/3})$
Constant Multiple Rule: $= 3\frac{d}{dx}(x^{-1/2}) - \frac{d}{dx}(x^{-2/3})$
Power Rule: $= 3\left(-\frac{1}{2}x^{-3/2}\right) - \left($

Differentiate
$$v = \frac{3\sqrt{x} - \sqrt[3]{x}}{x}$$
.
 $v = 3\frac{\sqrt{x}}{x} - \frac{\sqrt[3]{x}}{x}$
 $v = 3x^{-1/2} - x^{-2/3}$.
Difference Rule: $\frac{dv}{dx} = \frac{d}{dx}(3x^{-1/2}) - \frac{d}{dx}(x^{-2/3})$
Constant Multiple Rule: $= 3\frac{d}{dx}(x^{-1/2}) - \frac{d}{dx}(x^{-2/3})$
Power Rule: $= 3\left(-\frac{1}{2}x^{-3/2}\right) - \left($

Differentiate
$$v = \frac{3\sqrt{x} - \sqrt[3]{x}}{x}$$
.
 $v = 3\frac{\sqrt{x}}{x} - \frac{\sqrt[3]{x}}{x}$
 $v = 3x^{-1/2} - x^{-2/3}$.
Difference Rule: $\frac{dv}{dx} = \frac{d}{dx}(3x^{-1/2}) - \frac{d}{dx}(x^{-2/3})$
Constant Multiple Rule: $= 3\frac{d}{dx}(x^{-1/2}) - \frac{d}{dx}(x^{-2/3})$
Power Rule: $= 3\left(-\frac{1}{2}x^{-3/2}\right) - \left(-\frac{2}{3}x^{-5/3}\right)$

Differentiate
$$v = \frac{3\sqrt{x} - \sqrt[3]{x}}{x}$$
.
 $v = 3\frac{\sqrt{x}}{x} - \frac{\sqrt[3]{x}}{x}$
 $v = 3x^{-1/2} - x^{-2/3}$.
Difference Rule: $\frac{dv}{dx} = \frac{d}{dx}(3x^{-1/2}) - \frac{d}{dx}(x^{-2/3})$
Constant Multiple Rule: $= 3\frac{d}{dx}(x^{-1/2}) - \frac{d}{dx}(x^{-2/3})$
Power Rule: $= 3\left(-\frac{1}{2}x^{-3/2}\right) - \left(-\frac{2}{3}x^{-5/3}\right)$
 $= \frac{2}{3}x^{-5/3} - \frac{3}{2}x^{-3/2}$.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$
$$= \lim_{h \to 0} \frac{a^x a^h - a^x}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$
$$= \lim_{h \to 0} \frac{a^x a^h - a^x}{h}$$
$$= \lim_{h \to 0} \frac{a^x (a^h - 1)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$
$$= \lim_{h \to 0} \frac{a^x a^h - a^x}{h}$$
$$= \lim_{h \to 0} \frac{a^x (a^h - 1)}{h}$$
$$= a^x \lim_{h \to 0} \frac{a^h - 1}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$
$$= \lim_{h \to 0} \frac{a^x a^h - a^x}{h}$$
$$= \lim_{h \to 0} \frac{a^x (a^h - 1)}{h}$$
$$= a^x \lim_{h \to 0} \frac{a^h - 1}{h}$$
$$= a^x f'(0).$$

We have shown that, if $f(x) = a^x$ is differentiable at 0, then it is differentiable everywhere, and

 $f'(x)=f'(0)a^x.$

We have shown that, if $f(x) = a^x$ is differentiable at 0, then it is differentiable everywhere, and

$$f'(x)=f'(0)a^x.$$

It is a fact that, for all positive *a*, the limit $\lim_{h\to 0} \frac{a^h-1}{h}$ exists (we will not prove this). Approximations for a = 2 and a = 3 appear below.

$$\lim_{h \to 0} \frac{2^h - 1}{h} \approx 0.693147, \qquad \lim_{h \to 0} \frac{3^h - 1}{h} \approx 1.098612.$$

We have shown that, if $f(x) = a^x$ is differentiable at 0, then it is differentiable everywhere, and

$$f'(x)=f'(0)a^x.$$

It is a fact that, for all positive *a*, the limit $\lim_{h\to 0} \frac{a^h-1}{h}$ exists (we will not prove this). Approximations for a = 2 and a = 3 appear below.

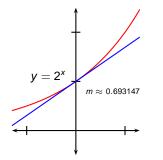
$$\lim_{h\to 0}\frac{2^h-1}{h}\approx 0.693147, \qquad \lim_{h\to 0}\frac{3^h-1}{h}\approx 1.098612.$$

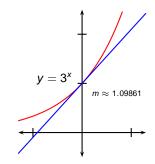
Then the derivative of $f(x) = a^x$ exists for all positive *a*. Approximations for a = 2 and a = 3 appear below.

$$\frac{\mathrm{d}}{\mathrm{d}x}(2^x)\approx (0.69)2^x, \qquad \frac{\mathrm{d}}{\mathrm{d}x}(3^x)\approx (1.10)3^x.$$

If
$$f(x) = a^x$$
, then $f'(x) = f'(0)a^x$.

The simplest differential formula occurs when f'(0) = 1. Since $\lim_{h\to 0} \frac{2^{h}-1}{h} \approx 0.69$ and $\lim_{h\to 0} \frac{3^{h}-1}{h} \approx 1.10$, we expect there is a number *a* between 2 and 3 such that $\lim_{h\to 0} \frac{a^{h}-1}{h} = 1$.



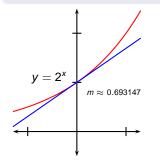


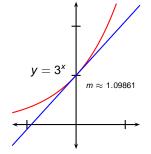
If
$$f(x) = a^x$$
, then $f'(x) = f'(0)a^x$.

The simplest differential formula occurs when f'(0) = 1. Since $\lim_{h\to 0} \frac{2^{h}-1}{h} \approx 0.69$ and $\lim_{h\to 0} \frac{3^{h}-1}{h} \approx 1.10$, we expect there is a number *a* between 2 and 3 such that $\lim_{h\to 0} \frac{a^{h}-1}{h} = 1$.

Definition (e)

e is the number such that $\lim_{h\to 0} \frac{e^h - 1}{h} = 1$.



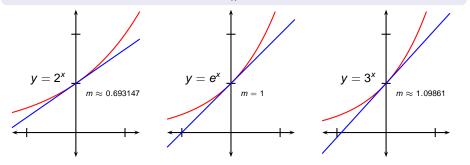


If
$$f(x) = a^x$$
, then $f'(x) = f'(0)a^x$.

The simplest differential formula occurs when f'(0) = 1. Since $\lim_{h\to 0} \frac{2^{h}-1}{h} \approx 0.69$ and $\lim_{h\to 0} \frac{3^{h}-1}{h} \approx 1.10$, we expect there is a number *a* between 2 and 3 such that $\lim_{h\to 0} \frac{a^{h}-1}{h} = 1$.

Definition (e)

e is the number such that $\lim_{h\to 0} \frac{e^h - 1}{h} = 1$.



Definition (Natural Exponential Function)

e^x is called the natural exponential function. Its derivative is

$$\frac{\mathsf{d}}{\mathsf{d}x}\mathbf{e}^{x}=\mathbf{e}^{x}.$$

Differentiate
$$y = e^x + x^7$$
.

Differentiate $y = e^x + x^7$. $\frac{dy}{dx} = \frac{d}{dx}(e^x) + \frac{d}{dx}(x^7)$

Differentiate
$$y = e^x + x^7$$
.
 $\frac{dy}{dx} = \frac{d}{dx}(e^x) + \frac{d}{dx}(x^7)$

$$= +$$

Differentiate
$$y = e^x + x^7$$
.
 $\frac{dy}{dx} = \frac{d}{dx}(e^x) + \frac{d}{dx}(x^7)$
 $= e^x + dx$

Differentiate
$$y = e^x + x^7$$
.
 $\frac{dy}{dx} = \frac{d}{dx}(e^x) + \frac{d}{dx}(x^7)$
 $= e^x +$

Differentiate
$$y = e^x + x^7$$
.
 $\frac{dy}{dx} = \frac{d}{dx}(e^x) + \frac{d}{dx}(x^7)$
 $= e^x + 7x^6$.