Exam I Calculus I, Math 140 March 7, 2013

Name:

Problem 1 (7.5 + 7.5 pts) Find an expression for the function $(f \circ g)(x)$ and $(g \circ f)(x)$, where

$$f(x) = \frac{3x-1}{x-2}, \quad g(y) = \frac{y-2}{2y-4}$$

Simplify your answer to a single fraction.

Solution. Note that for $y \neq 2$, we have that $g(y) = \frac{y-2}{2y-4} = \frac{(y-2)}{2(y-2)} = \frac{1}{2}$. Therefore

$$f(g(x)) = f(\frac{1}{2}) = \frac{3 \times \frac{1}{2} - 1}{\frac{1}{2} - 2} = \frac{\frac{1}{2}}{-\frac{3}{2}} = -\frac{1}{3}$$

Furthermore, since $g(y) = \frac{1}{2}$, we need not compute anything to get a formula for g(f(x)) - indeed, the value of g does not depend on its argument:

$$g(f(x)) = \frac{1}{2}$$

Final answer: $(f \circ g)(x) = -\frac{1}{3}, (g \circ f)(x) = \frac{1}{2}.$

Problem 2 (15 pts) Find all solutions in the interval $[0, 2\pi]$ of the equation. $\sqrt{3}\sin x = \sin 2x$

Solution. We have the formula $\sin 2x = 2 \sin x \cos x$. Therefore

$$\sqrt{3}\sin x = 2\sin x \cos x$$
$$\sqrt{3}\sin x - 2\sin x \cos x = 0$$
$$\sin x(\sqrt{3} - 2\cos x) = 0$$

Thus either $\sin x = 0$ or $\sqrt{3} - 2\cos x = 0$. As studied in the lecture on trigonometry, for $x \in [0, 2\pi]$, we have that $\sin x = 0$ if $x = 0, \pi$ or 2π . On the other hand $\sqrt{3} - 2\cos x = 0$ is equivalent to $\cos x = \frac{\sqrt{3}}{2}$, which, together with $x \in [0, 2\pi]$, implies $x = \frac{\pi}{6} \text{ or } x = \frac{11\pi}{6}.$ Final answer: $x \in \{0, \frac{\pi}{6}, \pi, \frac{11\pi}{6}, 2\pi\}.$

Problem 3 (15 pts) Evaluate the limit if it exists.

$$\lim_{x \to 2} \frac{3x^2 - 4x - 4}{x^3 - 4x}$$

Solution.

$$\lim_{x \to 2} \frac{3x^2 - 4x - 4}{x^3 - 4x} = \lim_{x \to 2} \frac{(3x + 2)(x - 2)}{x(x - 2)(x + 2)} = \lim_{x \to 2} \frac{3x + 2}{x(x + 2)} = \frac{3 \times 2 + 2}{2(2 + 2)} = \frac{8}{8} = 1.$$

Problem 4 (10 pts) Evaluate the limit.

$$\lim_{x \to 2^+} \frac{\sqrt{x^3 - 4x}}{3x^2 - 4x - 4}$$

Solution.

$$\lim_{x \to 2^+} \frac{\sqrt{x^3 - 4x}}{3x^2 - 4x - 4} = \lim_{x \to 2^+} \frac{(x(x-2)(x+2))^{\frac{1}{2}}}{(3x+2)(x-2)} = \lim_{x \to 2^+} \frac{x^{\frac{1}{2}}(x+2)^{\frac{1}{2}}}{(3x+2)(x-2)^{\frac{1}{2}}}$$

As the denominator of the above fraction tends to 0 without changing sign as x tends to 2, and the numerator is non-zero, the limit must be equal to either ∞ or $-\infty$. On the other hand $x \to 2^+$ implies that x > 2 and therefore multiplicands in the above limit are positive. Therefore the limit equals $+\infty$.

Final answer: $\lim_{x \to 2^+} \frac{\sqrt{x^3 - 4x}}{3x^2 - 4x - 4} = \infty.$

Problem 5 (10 pts) Use the intermediate value theorem to show that the equation has a solution in the interval (-2, 0).

$$e^{2x} + x + 1 = \sin(-x) \quad . \tag{1}$$

Solution. Let $f(x) = e^{2x} + x + 1 - \sin(-x) = e^{2x} + x + 1 + \sin(+x)$. A number x is a solution to the equation (1) if and only if f(x) = 0. On the other hand $f(-2) = e^{-4} - 2 + 1 + \sin(-2) = 1 - e^{-4} - \sin 2$. We know that $e^{-4} = \frac{1}{e^4} < 1$ and so $1 - e^4 < 0$. Furthermore as $0 < 2 < \pi$ we have that $\sin 2 > 0$ and $-\sin 2 < 0$ (recall that $\sin 2$ is measured in radians). Therefore $1 - e^{-4} - \sin 2 < 0$. On the other hand, $f(0) = e^0 + 0 + 1 + \sin 0 = 2 > 0$. We have that f(x) is continuous: we studied in class that $1, x, \sin x$ and e^x are all continuous functions, and we also studied that sum of continuous functions is continuous. Furthermore f(-2) < 0 < f(0). Therefore by the Intermediate Value Theorem we have that there exists a number $c \in (-2, 0)$ for which f(c) = 0, which proves that (1) has a solution in the desired interval.

Problem 6 (10pts) Solve the equation.

$$e^{-4x} + 5e^{-2x} - 6 = 0 \quad .$$

Set $z = e^{-2x}$. The equation becomes

$$z^2 + 5z - 6 = 0$$

(z+6)(z-1) = 0 .

Therefore $e^{-2x} = z = 1$ or $e^{-2x} = z = -6$. The latter case, $e^{-2x} = -6$, is not possible for real x. Therefore $e^{-2x} = 1$, and $-2x = \ln 1 = 0$, so x = 0.

Final answer: x = 0.

Problem 7 (15 pts) Plot roughly the function

 $f(x) = x^2 + 2x + 2$

with domain x > -1. Compute the inverse function $f^{-1}(y)$. Plot roughly $f^{-1}(x)$. Explain what is the relationship between the graphs of $f^{-1}(x)$ and f(x).

To compute $f^{-1}(y)$, we solve the equation y = f(x) for y:

$$x2 + 2x + 2 = y
 x2 + 2x + 2 - y = 0
 (x + 1)2 = y - 1
 x + 1 = \pm \sqrt{y - 1}
 x = -1 \pm \sqrt{y - 1}$$

On the other hand we are given that x > -1, and therefore, as $\sqrt{y-1} > 0$ (square roots are positive by definition), we have that $x = f^{-1}(y) = -1 + \sqrt{y-1}$, y > 1. Therefore, after relabelling the dummy argument variable of f^{-1} from y to x, we get

$$f^{-1}(x) = -1 + \sqrt{x - 1}, \qquad x > 1$$
.

The function f(x), x > -1 is easy to plot - that is half of a parabola with a vertex at x = -1, y = f(-1) = 1. On the other hand, the graph of $f^{-1}(x)$ is the reflection of f(x) across the line y = x. This is easy to plot roughly by hand, as expected of you on the test. Using the explicit formulas for f(x) and $f^{-1}(x)$ above, it is very easy to plot the functions by computer, as shown below.

Problem 8 (10 pts) Compute the limit.

$$\lim_{x \to \infty} \sqrt{x^2 + 3x} - \sqrt{x^2 - \frac{x}{3}} \quad .$$

Solution.

$$\lim_{x \to \infty} \sqrt{x^2 + 3x} - \sqrt{x^2 - \frac{x}{3}} = \lim_{x \to \infty} \frac{\left(\sqrt{x^2 + 3x} - \sqrt{x^2 - \frac{x}{3}}\right)\left(\sqrt{x^2 + 3x} + \sqrt{x^2 - \frac{x}{3}}\right)}{\sqrt{x^2 + 3x} + \sqrt{x^2 - \frac{x}{3}}} = \lim_{x \to \infty} \frac{\sqrt{x^2 + 3x^2} - \sqrt{x^2 - \frac{x}{3}}^2}{\sqrt{x^2 + 3x} + \sqrt{x^2 - \frac{x}{3}}}$$
$$= \lim_{x \to \infty} \frac{\cancel{x^2 + 3x} - \sqrt{x^2 + \frac{x}{3}}}{\sqrt{x^2 + 3x} + \sqrt{x^2 - \frac{x}{3}}} = \lim_{x \to \infty} \frac{\frac{10}{3} \cancel{x^2}}{\left(\sqrt{x^2 + 3x} + \sqrt{x^2 - \frac{x}{3}}\right)\frac{1}{x}} = \lim_{x \to \infty} \frac{\frac{10}{3}}{\sqrt{1 + \frac{3}{x}} + \sqrt{1 - \frac{1}{3x}}}$$
$$= \frac{\frac{10}{3}}{\sqrt{1 + \lim_{x \to \infty} \frac{3}{x}} + \sqrt{1 - \lim_{x \to \infty} \frac{1}{3x}}} = \frac{10}{\sqrt{1 + 0} + \sqrt{1 - 0}} = \frac{10}{6} = \frac{5}{3}$$

Problem 9 (15 pts) Compute the limit.

$$\lim_{x \to \infty} \sqrt{3^{2x} + 3^{x+1}} - \sqrt{3^{2x} - 3^{x-1}} \quad .$$

Solution. The function mapping x to 3^x is one to one and increasing. Furthermore, as $x \to \infty$, we have hat $3^x \to \infty$. Therefore we have the right to change variables $u = 3^x$. Therefore we have that

$$\lim_{\substack{x \to \infty \\ u = 3^x \\ u \to \infty}} \sqrt{3^{2x} + 3^{x+1}} - \sqrt{3^{2x} - 3^{x-1}} = \lim_{3^x = u \to \infty} \sqrt{(3^x)^2 + 3 \times 3^x} - \sqrt{(3^x)^2 - \frac{3^x}{3}} = \lim_{u \to \infty} \sqrt{u^2 + 3u} - \sqrt{u^2 - \frac{u}{3}} = \frac{5}{3} \quad ,$$

where we have noticed that last limit is identical to that given in Problem 8, and we have already computed it in the solution to the previous problem.