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(8.2) The Product and Quotient Rules The Product Rule

Now we need a formula for the derivative of the product of two
functions. One might guess that the derivative of a product is the
product of the derivatives; however, this is wrong.
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(8.2) The Product and Quotient Rules The Product Rule

Now we need a formula for the derivative of the product of two
functions. One might guess that the derivative of a product is the
product of the derivatives; however, this is wrong.

Example (Not the Product Rule)
Let f(x) = x and g(x) = x.

r(x) = (f9)(x) =
OR (f0) (x) =
7(x)g'(x) =
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Now we need a formula for the derivative of the product of two
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product of the derivatives; however, this is wrong.

Example (Not the Product Rule)
Let f(x) = x and g(x) = x.
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(8.2) The Product and Quotient Rules The Product Rule

Now we need a formula for the derivative of the product of two
functions. One might guess that the derivative of a product is the
product of the derivatives; however, this is wrong.

Example (Not the Product Rule)
Let f(x) = x and g(x) = x.

fix) =1. (fg)(x) =
g'(x) = (fg)'(x) =
F(x)g'(x) =
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(8.2) The Product and Quotient Rules The Product Rule

Now we need a formula for the derivative of the product of two
functions. One might guess that the derivative of a product is the
product of the derivatives; however, this is wrong.

Example (Not the Product Rule)
Let f(x) = x and g(x) = x.

fix) =1. (fg)(x) =
gx) = (fg)'(x) =
F(x)g'(x) =
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(8.2) The Product and Quotient Rules The Product Rule

Now we need a formula for the derivative of the product of two
functions. One might guess that the derivative of a product is the
product of the derivatives; however, this is wrong.

Example (Not the Product Rule)
Let f(x) = x and g(x) = x.

fix) =1. (fg)(x) =
g'(x)=2x. (fg)'(x) =
F(x)g'(x) =
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(8.2) The Product and Quotient Rules The Product Rule

Now we need a formula for the derivative of the product of two
functions. One might guess that the derivative of a product is the
product of the derivatives; however, this is wrong.

Example (Not the Product Rule)
Let f(x) = x and g(x) = x.

fix)=1. (fg)(x) =
g'(x) = 2x. (fg)'(x) =
f(x)g'(x) =
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(8.2) The Product and Quotient Rules The Product Rule

Now we need a formula for the derivative of the product of two
functions. One might guess that the derivative of a product is the
product of the derivatives; however, this is wrong.

Example (Not the Product Rule)
Let f(x) = x and g(x) = x.
fi(x)=1. (f9)(x) =
g'(x)=2x. (fg)'(x) =
f'(x)g'(x) = 2x.
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(8.2) The Product and Quotient Rules The Product Rule

Now we need a formula for the derivative of the product of two
functions. One might guess that the derivative of a product is the
product of the derivatives; however, this is wrong.

Example (Not the Product Rule)
Let f(x) = x and g(x) = x.
fi(x)=1. (fg)(x) =
g'(x)=2x. (fg)'(x) =
f'(x)g' (x) = 2x.
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(8.2) The Product and Quotient Rules The Product Rule

Now we need a formula for the derivative of the product of two
functions. One might guess that the derivative of a product is the
product of the derivatives; however, this is wrong.

Example (Not the Product Rule)
Let f(x) = x and g(x) = x.
fi(x)=1. (fg)(x)
g'(x)=2x. (fg)'(x)
f'(x)g' (x) = 2x.

x°.

FreeCalc Math 140 Lecture 12 March 14, 2013



(8.2) The Product and Quotient Rules The Product Rule

Now we need a formula for the derivative of the product of two
functions. One might guess that the derivative of a product is the
product of the derivatives; however, this is wrong.

Example (Not the Product Rule)

Let f(x) = x and g(x) = x.
f'(x)=1. (fg)(x) = x°.

g'(x)=2x. (fg)'(x) =
f'(x)g' (x) = 2x.
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(8.2) The Product and Quotient Rules The Product Rule

Now we need a formula for the derivative of the product of two
functions. One might guess that the derivative of a product is the
product of the derivatives; however, this is wrong.

Example (Not the Product Rule)
Let f(x) = x and g(x) = x.
fi(x)=1. (f9)(x)
g'(x)=2x. (fg)'(x)
f'(x)g' (x) = 2x.

x3.

3x°.
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(8.2) The Product and Quotient Rules The Product Rule

Now we need a formula for the derivative of the product of two
functions. One might guess that the derivative of a product is the
product of the derivatives; however, this is wrong.

Example (Not the Product Rule)
Let f(x) = x and g(x) = x.
fix)=1. (fg)(x)
g'(x) = 2x. (fg)'(x)
f'(x)g' (x) = 2x.
Therefore f'(x)g'(x) # (fg)'(x).

x3.

3x2.
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(8.2) The Product and Quotient Rules The Product Rule

Now we need a formula for the derivative of the product of two
functions. One might guess that the derivative of a product is the
product of the derivatives; however, this is wrong.

Example (Not the Product Rule)
Let f(x) = x and g(x) = x.
fi(x)=1. (f9)(x)
9'(x) = 2x. (fg)'(x) = 3x2.
f'(x)g' (x) = 2x.
Therefore f'(x)g'(x) # (fg)'(x).

x3.

The correct formula is called the Product Rule.
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(3.2) The Product and Quotient Rules The Product Rule

Theorem (The Product Rule)

If f and g are both differentiable, then
d d d
S F00g00] = 10x) L 1g(0)] + g0x) L [F(x)].

Proof.

FreeCalc Math 140 Lecture 12 March 14, 2013



(3.2) The Product and Quotient Rules The Product Rule

Theorem (The Product Rule)

If f and g are both differentiable, then
d d d
S F00g00] = 10x) L 1g(0)] + g0x) L [F(x)].

Proof.
Let F(x) = f(x)g(x). Then
F'(x) =
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(3.2) The Product and Quotient Rules The Product Rule

Theorem (The Product Rule)

If f and g are both differentiable, then
d d d
S F00g00] = 10x) L 1g(0)] + g0x) L [F(x)].

Proof.

Let F(x) = f(x)g(x). Then
F(x + h) — F(x)
h

oon
F(x)_,I7|Ln0
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(3.2) The Product and Quotient Rules The Product Rule

Theorem (The Product Rule)

If f and g are both differentiable, then
d d d
S F00g00] = 10x) L 1g(0)] + g0x) L [F(x)].

Proof.
Let F(x) = f(x)g(x). Then

f(x + h)g(x + h) — f(x)g(x)
h—0 h
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(8.2) The Product and Quotient Rules The Product Rule

Theorem (The Product Rule)
If f and g are both differentiable, then

d d d
10900 = )2 [g(X)] + 902 (7))

Proof.

Let F(x) = f(x)g(x). Then

F(x+ h) — F(x) f(x + h)g(x + h) — f(x)g(x)
h

Fx) = /Liino B fLiLno h
_ im f(x + h)g(x + h) — f(x + h)g(x) + f(x + h)g(x) — f(x)g(x)
h—0 h
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(8.2) The Product and Quotient Rules The Product Rule

Theorem (The Product Rule)
If f and g are both differentiable, then

d d d
10900 = )2 [g(X)] + 902 (7))

Proof.

Let F(x) = f(x)g(x). Then
F(x+ h) — F(x) — im f(x + h)g(x + h) — f(x)g(x)
h h—0 h
_ im f(x + h)g(x + h) — f(x + h)g(x) + f(x + h)g(x) — f(x)g(x)
h—0 h

i [f(H h)g(x+hgg(x) + g [t hlz f(x)]

oon
F(X)_/Lino
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(8.2) The Product and Quotient Rules The Product Rule

Theorem (The Product Rule)
If f and g are both differentiable, then

d d d
10900 = )2 [g(X)] + 902 (7))

Proof.

Let F(x) = f(x)g(x). Then

F(x+ h) — F(x) f(x + h)g(x + h) — f(x)g(x)
h

Fx) = /Liino B fLiLno h
_ im f(x + h)g(x + h) — f(x + h)g(x) + f(x + h)g(x) — f(x)g(x)
h—0 h
_ ,',ino [f(x N h)g(x+ hg - g(x) N g(x)f(x+ hlz — f(x)]
— lim f(x + h) - lim XN =00
h—0 h—0 h

. . f(x+ h) —f(x)
- mot) -
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(8.2) The Product and Quotient Rules The Product Rule

Theorem (The Product Rule)
If f and g are both differentiable, then

d d d
10900 = )2 [g(X)] + 902 (7))

Proof.

Let F(x) = f(x)g(x). Then

F(x+ h) — F(x) f(x + h)g(x + h) — f(x)g(x)
h

Fx) = /Liino B fLiLno h
_ im f(x + h)g(x + h) — f(x + h)g(x) + f(x + h)g(x) — f(x)g(x)
h—0 h
_ ,',ino [f(x N h)g(x+ hg - g(x) N g(x)f(x+ hlz — f(x)]
— Jim F(x+ ) - lim ZXER) = 9(X)
h—0 h—0 h

. . f(x+h)—f(x)
R
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(8.2) The Product and Quotient Rules The Product Rule

Theorem (The Product Rule)
If f and g are both differentiable, then

d d d
10900 = )2 [g(X)] + 902 (7))

Proof.

Let F(x) = f(x)g(x). Then

F(x+ h) — F(x) f(x + h)g(x + h) — f(x)g(x)
h

Fx) = /Liino B fLiLno h
_ im f(x + h)g(x + h) — f(x + h)g(x) + f(x + h)g(x) — f(x)g(x)
h—0 h
_ ,',ino [f(x N h)g(x+ hg - g(x) N g(x)f(x+ hlz — f(x)]
— Jim F(x+ ) - lim ZXER) = 9(X)
h—0 h—0 h

f(x+h)—f(x)
s = f(x)
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(8.2) The Product and Quotient Rules The Product Rule

Theorem (The Product Rule)
If f and g are both differentiable, then

d d d
10900 = )2 [g(X)] + 902 (7))

Proof.

Let F(x) = f(x)g(x). Then

F(x+ h) — F(x) f(x + h)g(x + h) — f(x)g(x)
h

Fx) = /Liino B fLiLno h
_ im f(x + h)g(x + h) — f(x + h)g(x) + f(x + h)g(x) — f(x)g(x)
h—0 h
_ ,',ino [f(x N h)g(x+ hg —9(x) N g(x)f(x+ hlz - f(x)]
e
+ lim g(x) - lim focth) = 1x) _ f(x)

h—0 h—0 h
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(8.2) The Product and Quotient Rules The Product Rule

Theorem (The Product Rule)
If f and g are both differentiable, then

d d d
10900 = )2 [g(X)] + 902 (7))

Proof.

Let F(x) = f(x)g(x). Then

F(x+ h) — F(x) f(x + h)g(x + h) — f(x)g(x)
h

Fx) = /Liino B fLiLno h
_ im f(x + h)g(x + h) — f(x + h)g(x) + f(x + h)g(x) — f(x)g(x)
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e
+ lim g(x) - tim "EEDZT) 59
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(8.2) The Product and Quotient Rules The Product Rule

Theorem (The Product Rule)
If f and g are both differentiable, then

d d d
10900 = )2 [g(X)] + 902 (7))

Proof.

Let F(x) = f(x)g(x). Then

F(x+ h) — F(x) f(x + h)g(x + h) — f(x)g(x)
h

Fx) = /Liino B fLiLno h
_ im f(x + h)g(x + h) — f(x + h)g(x) + f(x + h)g(x) — f(x)g(x)
h—0 h
_ fl,ino [f(x N h)g(x+ hg —9(x) N g(X)f(x+ hlz - f(x)]
L e
+ lim g(x) - tim "EEDZT) 759
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(3.2) The Product and Quotient Rules The Product Rule

Theorem (The Product Rule)

If f and g are both differentiable, then
d d d
S F00g00] = 10x) L 1g(0)] + g0x) L [F(x)].

Proof.
Let F(x) = f(x)g(x). Then
f(x + h)g(x + h) — f(x)g(x)

P iy ===t = ;
_ im f(x + h)g(x + h) — f(x + h)g(x) + f(x + h)g(x) — f(x)g(x)
h—0 h
- i [f(x 4 pdtt hg 900 | g0t hg - f(x)]
L e
+ lim g(x) - im "I ZT0) g5 4 ()
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(3.2) The Product and Quotient Rules The Product Rule

Theorem (The Product Rule)

If f and g are both differentiable, then
d d d
S F00g00] = 10x) L 1g(0)] + g0x) L [F(x)].

Proof.
Let F(x) = f(x)g(x). Then
f(x + h)g(x + h) — f(x)g(x)

P iy ===t = ;
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(3.2) The Product and Quotient Rules The Product Rule

Theorem (The Product Rule)

If f and g are both differentiable, then
d d d
S F00g00] = 10x) L 1g(0)] + g0x) L [F(x)].

Proof.
Let F(x) = f(x)g(x). Then
f(x + h)g(x + h) — f(x)g(x)

P iy ===t = ;
_ im f(x + h)g(x + h) — f(x + h)g(x) + f(x + h)g(x) — f(x)g(x)
h—0 h
- i [f(x 4 pdtt hg 900 | g0t hg - f(x)]
Ll e
+ lim o) - im "I 0500 4 g0
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(8.2) The Product and Quotient Rules The Product Rule

Example (Product Rule, polynomial times the Natural
Exponential Function)

Differentiate  f(x) = x3¢*.
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(8.2) The Product and Quotient Rules The Product Rule

Example (Product Rule, polynomial times the Natural
Exponential Function)

Differentiate  f(x) = x3¢*.

Product Rule: f'(x) = <x3) c;j_x () + (e¥) dix <x3>
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(8.2) The Product and Quotient Rules The Product Rule

Example (Product Rule, polynomial times the Natural
Exponential Function)

Differentiate  f(x) = x3¢*.
d d
. ! _ 3 X X 3
Product Rule: f'(x) = (x ) X (e")+ (e )—dX <x )

() Orven ()
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(8.2) The Product and Quotient Rules The Product Rule

Example (Product Rule, polynomial times the Natural
Exponential Function)

Differentiate  f(x) = x3¢*.
Product Rule: f'(x) = <x3) dci( () + (e¥) dix <x3>
) ()
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(8.2) The Product and Quotient Rules The Product Rule

Example (Product Rule, polynomial times the Natural
Exponential Function)

Differentiate  f(x) = x3¢*.
Product Rule: f(x) = <x3) dix (&) + (&) Oi( <x3)
- (4 @)+ ()
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(8.2) The Product and Quotient Rules The Product Rule

Example (Product Rule, polynomial times the Natural
Exponential Function)

Differentiate  f(x) = x3¢*.
Product Rule: f(x) = <x3) dix (&) + (&) Oi( <x3)
- (x3) (&) + (€Y (3x2)
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(8.2) The Product and Quotient Rules The Product Rule

Example (Product Rule, polynomial times the Natural
Exponential Function)

Differentiate  f(x) = x3¢*.

Product Rule: f'(x) = <x3) c;j_x () + (e¥) dix <x3>

- (x3) (e¥) + (&) (3x2)

= e*(x® +3x3).
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(8.2) The Product and Quotient Rules The Quotient Rule

The proof of the Quotient Rule uses a trick similar to the one in the
proof of the Product Rule.

Theorem (The Quotient Rule)
If f and g are differentiable, then

d_fi[f(X)]

g() g lFO] = F(x) g lg(x)]
[9(x)]?
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(8.2) The Product and Quotient Rules The Quotient Rule

Example (Quotient Rule, rational function)

X° +2x

Differentiate y = X610
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(8.2) The Product and Quotient Rules The Quotient Rule

Example (Quotient Rule, rational function)

. . x% 4+ 2x
Differentiate y = X610
Quotient Rule:

dy (—x8+2) & (x5 +2x) — (x® +2x) & (—x8 +2)

dx (_X6_|_2)2
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(8.2) The Product and Quotient Rules The Quotient Rule

Example (Quotient Rule, rational function)

X° +2x

Differentiate y = X610

Quotient Rule:
dy _ (42 (4 +20) = ($ 42 & (X +2)
dx (—X6—|—2)2
(=x°*+2) ( ) — (x*+2x) ( )
(-x°+2)°
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(8.2) The Product and Quotient Rules The Quotient Rule

Example (Quotient Rule, rational function)

X° +2x

Differentiate y = X610

Quotient Rule:
dy _ (X +2) & (5 +26) - (C+29 & (-x0+2)
dx (—x6 +2)°
(=x®+2) (5x*+2) — (x> +2x) ( )
(-x® +2)?
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(8.2) The Product and Quotient Rules The Quotient Rule

Example (Quotient Rule, rational function)

X° +2x

Differentiate y = X610

Quotient Rule:
dy _ (=x°+2) & (x° +2x) — (x* +2x) § (-x° +2)
dx (—x6 +2)°
(=x8+2) (Bx*+2) — (x> +2x) ( )
(-x® +2)?
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(8.2) The Product and Quotient Rules The Quotient Rule

Example (Quotient Rule, rational function)

X° +2x

Differentiate y = X610

Quotient Rule:
dy  (=x°+2) & (x¥*+2x) — (x°*+2x) § (-x°+2)
dx (—x6 +2)°
(=x®+2) (5x*+2) — (x> +2x) (—6x°)
(x5 +2)
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(8.2) The Product and Quotient Rules The Quotient Rule

Example (Quotient Rule, rational function)

X° +2x

Differenti ==

ifferentiate  y Y
Quotient Rule:

dy (—x8+2) & (x5 +2x) — (x® +2x) & (—x8 +2)

dx (—x5 + 2)2
_(—x®+2) (Bx*+2) — (x°+2x) (—6x°)
: (-0 +2)°
_ (—5x19—2x® + 10x* + 4) — (—6x"0 — 12x5)
(—x8 +2)2
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(8.2) The Product and Quotient Rules The Quotient Rule

Example (Quotient Rule, rational function)

542
Differentiate y:%.

Quotient Rule:
dy _ (X +2) & (5+26) - (C+20 & (-x0+2)
dx (—x6 +2)°
(=x®+2) (Bx*+2) — (x> +2x) (—6x°)
(-x8 +2)?
_ (—5x19—2x® + 10x* + 4) — (—6x"0 — 12x5)
(—x8 +2)2
x10+10x5 +10x* + 4
(—x° +2)?
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(8.3) Derivatives of Trigonometric Functions

Derivatives of Trigonometric Functions

/\ 1 | y—f(x)—sin(x)/
7 N N

1T y = f'(x)

|

What is the derivative of f(x) = sin x?

INE

3

N
3

FreeCalc Math 140 Lecture 12 March 14, 2013



(8.3) Derivatives of Trigonometric Functions

Derivatives of Trigonometric Functions

1T/—\y— f(x) = sin(x)
N . £

TN A

1T y =f'(x)

|

What is the derivative of f(x) = sin x?

(JE

3

N
3
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(8.3) Derivatives of Trigonometric Functions

Derivatives of Trigonometric Functions

1T/—\y— f(x) = sin(x)
N . £

/ \Aﬁ z va
' |

What is the derivative of f(x) = sin x?

(JE

3

N
3
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(8.3) Derivatives of Trigonometric Functions

Derivatives of Trigonometric Functions

1T/—\y— f(x) = sin(x)
PN . £

/ \Aﬁ z y:}/w
' |

What is the derivative of f(x) = sin x?

(JE

3

N
3
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(8.3) Derivatives of Trigonometric Functions

Derivatives of Trigonometric Functions

1T/—\y— f(x) = sin(x)
PN . £

N R

1T y =f'(x)

—

What is the derivative of f(x) = sin x?

(JE

3

N
3
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(8.3) Derivatives of Trigonometric Functions

Derivatives of Trigonometric Functions

1T/—\y— f(x) = sin(x)
PN . £

> N ¢~

1T y =f'(x)

—

What is the derivative of f(x) = sin x?

(JE

3

N
3
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(8.3) Derivatives of Trigonometric Functions

Derivatives of Trigonometric Functions

1T/—\y— f(x) = sin(x)
PN . £

> N ¢~

1T y =f'(x)

27

q
[ ]
q
- |
NJE
3

What is the derivative of f(x) = sin x?
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(8.3) Derivatives of Trigonometric Functions

Derivatives of Trigonometric Functions

1V—\y— f(x) = sin(x)
PN . £

> N ¢ ~_~

1T y =f'(x)

27

q
[ ]
q
- |
NJE
3

What is the derivative of f(x) = sin x?
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(8.3) Derivatives of Trigonometric Functions

Derivatives of Trigonometric Functions

1V—\y— f(x) = sin(x)
PN . £

> N ¢ ~_~

1T y =f'(x)

27

q
[ ]
q
- |
NJE
3

What is the derivative of f(x) = sin x?
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(8.3) Derivatives of Trigonometric Functions

Derivatives of Trigonometric Functions

1Vo\y_ f(x) = sin(x)
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(8.3) Derivatives of Trigonometric Functions

Let f(x)=sinx.

Then f(x) =
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Let f(x)=sinx.
im f(x + h) — f(x)
h—0 h

Then f(x) =
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(8.3) Derivatives of Trigonometric Functions

Let f(x)=sinx.
m f(x + h) — f(x) _im sin(x + h) —sinx

oon
Then 7(x) = /lvlao h h—0 h

FreeCalc Math 140 Lecture 12 March 14, 2013



Let

Then

(8.3) Derivatives of Trigonometric Functions

f(x) = sin x.
”m:lmf@+h%4u):mn$Mx+M—smx
h—0 h h—0 h
. sinxcos h+ cos x sin h — sin x

= lim
h—0 h
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(8.3) Derivatives of Trigonometric Functions

Let f(x)=sinx.

f(x + h) — f(x) sin(x + h) —sinx

Then f'(x)= lim = lim
( ) h—0 h h—0 h
. sinxcosh+cosxsinh—sinx
= |im
h—0 h
. sinxcosh—sinx cosxsinh
= [lim +
h—0 h h
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Let f(x)=sinx.

f(x + h) — f(x) sin(x + h) —sinx

Then f(x) = /I7im0 H = fl'imo P
— —
. sinxcosh+cosxsinh—sinx
= |im
h—0 h
. sinxcosh—sinx cosxsinh
= [lim +
h—0 h h

. . cosh—1 sinh
= lim [sinx | ——— | +cosx | —
h—0 h h
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Let f(x)=sinx.

f(x + h) — f(x) sin(x + h) —sinx

Then f(x) = /I7im0 H = fl'imo P
— —
. sinxcosh+cosxsinh—sinx
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(8.3) Derivatives of Trigonometric Functions

Let f(x)=sinx.

f(x + h) — f(x) sin(x + h) —sinx

Then f(x) = /I7im0 H = fl'imo P
— —
. sinxcosh+cosxsinh—sinx
= |im
h—0 h
. sinxcosh—sinx cosxsinh
= [lim +
h—0 h h
. . cosh—1 sinh
= lim [sinx | ——— | +cosx | —
h—0 h h
. . . cosh—1 ) . sinh
= limsinx: lim ——— + limcosx - |lim ——
h—0 h—0 h h—0 h—0 h
. . cosh—1 . sinh
=sinx- lim — —  + cosx - lim ——
h—0 h h—0 h

We need to do more work to find the other two limits.
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(8.3) Derivatives of Trigonometric Functions

Claim: tim 3™ _ 4
9—0 0

First suppose 0 < ¢ < 5. Then we can
write sin 6 using ratios of side lengths of a
triangle. 0
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(8.3) Derivatives of Trigonometric Functions

Claim: tim 3™ _ 4
9—0 0

First suppose 0 < ¢ < 5. Then we can
write sin 6 using ratios of side lengths of a
triangle. 0

sing = |BC| < |AB|
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(8.3) Derivatives of Trigonometric Functions

Claim: tim 3™ _ 4
9—0 0

First suppose 0 < ¢ < 5. Then we can
write sin 6 using ratios of side lengths of a

triangle. 0
o cC A

sinf = |BC| < |AB| < arcAB
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(8.3) Derivatives of Trigonometric Functions

Claim: lim SNY _ 4
6—0 6
First suppose 0 < ¢ < 5. Then we can
write sin 6 using ratios of side lengths of a

triangle.

o cC A

sinf = |BC| < |AB| < arcAB =

Therefore S' 0 < 1.
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Claim: lim SNY _ 4
6—0 6
First suppose 0 < ¢ < 5. Then we can
write sin 6 using ratios of side lengths of a

triangle.

o cC A

sinf = |BC| < |AB| < arcAB =

Therefore ¢ < 1.
0 = arcAB < |AD| + |DB| < |AD| + | DE|
= |AE]|
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Claim: lim S"¢ _ 4
6—0 6
First suppose 0 < ¢ < 5. Then we can
write sin 6 using ratios of side lengths of a

triangle.

o cC A

sinf = |BC| < |AB| < arcAB =

Therefore ¢ < 1.
0 = arcAB < |AD| + |DB| < |AD| + | DE|
= |AE| = |OA|tan¥§
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__ sin@ sinéd
Therefore 6 <tand = 237, S0 cosf < >5=.
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(8.3) Derivatives of Trigonometric Functions

Claim:  fim SMY _ 1
6—0 6
First suppose 0 < ¢ < 5. Then we can
write sin 6 using ratios of side lengths of a

triangle.

o cC A
sinf = |BC| < |AB| < arcAB =
Therefore ¢ < 1.
6 = arcAB < |AD| + |DB| < |AD| + | DE|
= |AE| = |OA|tan§ = tan6

__ sin@ sinéd
Therefore 6 <tand = 237, S0 cosf < >5=.

sing
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limg_pcosf =1andlimy_o1 =1, so by the Squeeze Theorem

Iim9%0+ Ligé =1.
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(8.3) Derivatives of Trigonometric Functions

Claim: im 1% _ 4
6—0 6
First suppose 0 < ¢ < 5. Then we can
write sin 6 using ratios of side lengths of a

triangle.

o cC A
sinf = |BC| < |AB| < arcAB =
Therefore ¢ < 1.
6 = arcAB < |AD| + |DB| < |AD| + | DE|
= |AE| = |OA|tan§ = tan6

Therefore § < tan§ = SNY 5o cos 6 < S0,

sing
cos b < o <1

limg_pcosf =1 andlimy_o1 =1, so by the Squeeze Theorem
limg_o+ B¢ = 1. 1 s even, so the left limit is also 1.
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(8.3) Derivatives of Trigonometric Functions

Let f(x)=sinx.
cosh—1

o . , . sinh
Then f(x)= limsinx- lim + limcosx - lim ——
h—0 h—0 h h—0 h—0 h

FreeCalc Math 140 Lecture 12 March 14, 2013



(8.3) Derivatives of Trigonometric Functions

Let f(x)=sinx.
cosh—1

N . , . sinh
Then f(x)= limsinx- lim + limcosx - lim ——
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Let f(x)=sinx.
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N . , . sinh
Then f(x)= limsinx- lim + limcosx - lim ——
h—0 h—0 h h—0 h—0 h

= sinx
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. . ., cosh—-1 . . sinh
Then f(x)= limsinx- lim ——— + limcosx - lim ——
h—0 h—0 h h—0 h—0 h
. . cosh—1
= sinx- lim ——— + cosx - 1

h—0 h
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(8.3) Derivatives of Trigonometric Functions

Let f(x)=sinx.

L . h—1 ) . [
Then f'(x) = limsinx- lim CO8 =1 | lim cosx - lim sinh
h—0 h—0 h h—0 h—0 h
. . cosh—1
=sinx- lim — 4+ cosx -1
h—0 h
We need to find
lim M
h—0 h
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(8.3) Derivatives of Trigonometric Functions

Let f(x)=sinx.

. . ., cosh—-1 . . sinh
Then f(x)= limsinx. lim ——— + limcosx - lim ——
h—0 h—0 h h—0 h—0 h
. . cosh—1
= sinx- lim ——— + cosx - 1

h—0 h
We need to find
cosh—1 ) <cosh—1 cosh+1>

im ——— = lim .
h—0 h h—0 h cosh+1
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(8.3) Derivatives of Trigonometric Functions

Let f(x)=sinx.

. . ., cosh—-1 . . sinh
Then f(x)= limsinx. lim ——— + limcosx - lim ——
h—0 h—0 h h—0 h—0 h
. . cosh—1
= sinx- lim ——— + cosx - 1

h—0 h
We need to find
cosh—1 . <cosh—1 cosh+1> . cos?h—1

lim ——— = lim . = bl
it h Ao0 h cosh+ 1 Ao h(cosh+1)
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(8.3) Derivatives of Trigonometric Functions

Let f(x)=sinx.

ho .
Then #(x) = lim sinx- lim 57 =1 1 jim cosx - im 317
h—0 h—0 h h—0 h—0 h
. . cosh—1
=sinx- lim ——— 4+ cosx -1
h—0 h
We need to find
. cosh—1 . cosh—1 cosh+1 . cos?h—1
lim ——— = |im . = lim —
h—0 h h—0 h cosh+ 1 h—0 h(cosh+1)
—sinh

lim ———
A00 h(cos h+ 1)

FreeCalc Math 140 Lecture 12 March 14, 2013



(8.3) Derivatives of Trigonometric Functions
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. . cosh—1
=sinx- lim ——— 4+ cosx -1
h—0 h
We need to find
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lim ——— = |im . = lim —
h—0 h h—0 h cosh+ 1 h—0 h(cosh+1)
—sin®h . sinh  sinh
= lim ——— = — |lim .
h—0 h(cosh+ 1) -0\ h cosh+1
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=sinx- lim ——— 4+ cosx -1
h—0 h
We need to find
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—sin?h . sinh  sinh
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sinh . sinh

= — |lim - lim
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h—0 h—0 h h—0 h—0 h
. . cosh—1
=sinx- lim ——— 4+ cosx -1
h—0 h
We need to find
. cosh—1 . cosh—1 cosh+1 . cos?h—1
im ——— = lim . = lim ——
h—0 h h—0 h cosh+ 1 h—0 h(cosh+ 1)
—sin?h . sinh  sinh
= lim —— = — lim .
h—0 h(cosh+ 1) h-0\ h cosh+1
— _lim sinh im sinh _ 0
~ hs0 h hsocosh+1 141
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(8.3) Derivatives of Trigonometric Functions

Let f(x)=sinx.

Then #(x) = lim sinx- lim 57 =1 1 jim cosx - im 317
h—0 h—0 h h—0 h—0 h
. . cosh—1
=sinx- lim ——— 4+ cosx -1
h—0 h
We need to find
. cosh—1 . cosh—1 cosh+1 . cos?h—1
lim ——— = |im . = lim —>-°"
h—0 h h—0 h cosh+ 1 h—0 h(cosh+1)
—sin®h . sinh  sinh
= Iim —— = — lim .
h—0 h(cosh+ 1) -0\ h cosh+1
— _lim sinh im sinh _ 0 0
~ hs0 h hsocosh+1 14+1)
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(8.3) Derivatives of Trigonometric Functions

Let f(x)=sinx.

Then #(x) = lim sinx- lim 57 =1 1 jim cosx - im 317
h—0 h—0 h h—0 h—0 h
. . cosh—1
=sinx- lim ——— 4+ cosx -1
h—0 h
We need to find
. cosh—1 . cosh—1 cosh+1 . cos?h—1
lim ——— = |im . = lim —>-°"
h—0 h h—0 h cosh+ 1 h—0 h(cosh+1)
—sin®h . sinh  sinh
= Iim —— = — lim .
h—0 h(cosh+ 1) -0\ h cosh+1
— _lim sinh im sinh _ 0 0
~ hs0 h hsocosh+1 14+1)

Theorem (The Derivative of sin x)

d .
— sin x = cos x
ax
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(8.3) Derivatives of Trigonometric Functions

Example (Product Rule, Product Rule with Sine)

Differentiate  f(x) = x sin x.
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(8.3) Derivatives of Trigonometric Functions

Example (Product Rule, Product Rule with Sine)

Differentiate  f(x) = x sin x.

Product Rule: f'(x) = (x) dix (sinx) + (sin x) dix (x)
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(8.3) Derivatives of Trigonometric Functions

Example (Product Rule, Product Rule with Sine)
Differentiate  f(x) = x sin x.
e d . . d
Product Rule: f'(x) = (x) dx (sin x) + (sin x) dx (x)
=)0 ) +(sinx) ()
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(8.3) Derivatives of Trigonometric Functions

Example (Product Rule, Product Rule with Sine)
Differentiate  f(x) = x sin x.
e d . . d
Product Rule: f'(x) = (x) dx (sin x) + (sin x) dx (x)
= (x) (cosx) + (sinx) ()
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(8.3) Derivatives of Trigonometric Functions

Example (Product Rule, Product Rule with Sine)
Differentiate  f(x) = x sin x.
e d . . d
Product Rule: f'(x) = (x) dx (sinx) + (sinx) dx (x)
= (x) (cosx) + (sinx) ()
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(8.3) Derivatives of Trigonometric Functions

Example (Product Rule, Product Rule with Sine)
Differentiate  f(x) = x sin x.
e d . . d
Product Rule: f'(x) = (x) dx (sinx) + (sinx) dx (x)
= (x) (cosx) + (sinx) (1)
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(8.3) Derivatives of Trigonometric Functions

Example (Product Rule, Product Rule with Sine)
Differentiate  f(x) = x sin x.
e d . . d
Product Rule: f'(x) = (x) dx (sin x) + (sin x) dx (x)

= (x) (cosx) + (sinx) (1)
= XCOS X + sin x.

FreeCalc Math 140 Lecture 12 March 14, 2013



(8.3) Derivatives of Trigonometric Functions

Example (Quotient Rule, Natural Exponential Function and
Sine)

eX

Differentiate y = 5 renx
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(8.3) Derivatives of Trigonometric Functions

Example (Quotient Rule, Natural Exponential Function and
Sine)

, . e*
Differentiate y = 5 renx
Quotient Rule:

dy (2+sinx) L (e¥) — (&) & (2+5sinx)

dx — (2 4 sin x)?
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(8.3) Derivatives of Trigonometric Functions

Example (Quotient Rule, Natural Exponential Function and
Sine)

, . e*
Differentiate y = 5 renx
Quotient Rule:

dy (2+sinx) L (e¥) — (&) & (2+5sinx)
dx (2 + sin x)?
(2+sinx) () —(€") ( )

(2 + sinx)?
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(8.3) Derivatives of Trigonometric Functions

Example (Quotient Rule, Natural Exponential Function and
Sine)

: . eX
Differentiate y = 5 renx
Quotient Rule:

dy (2+sinx) L (e¥) — (&) & (2+5sinx)
dx (2 + sin x)?
(2+sinx) () — (&) ( )

(2 + sinx)?
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(8.3) Derivatives of Trigonometric Functions

Example (Quotient Rule, Natural Exponential Function and
Sine)

: . eX
Differentiate y = 5 renx
Quotient Rule:

dy (2+sinx) L (e¥) — (&) & (2+5sinx)
dx (2 + sin x)?
(2+sinx) (e¥) — (&) ( )

(2 + sinx)?
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(8.3) Derivatives of Trigonometric Functions

Example (Quotient Rule, Natural Exponential Function and
Sine)

, . e*
Differentiate y = 5 renx
Quotient Rule:

dy (2+sinx) L (e¥) — (&) & (2+5sinx)
dx — (2 4 sin x)?
(2+sinx) (e*) — (e*) (cosx)

(2 + sinx)?
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(8.3) Derivatives of Trigonometric Functions

Example (Quotient Rule, Natural Exponential Function and
Sine)

, . eX
Differentiate y = 5 renx
Quotient Rule:

dy (2+sinx) L (e¥) — (&) & (2+5sinx)
dx (2 + sin x)?
(2+sinx) (e*) — (e*) (cos x)
(2 + sin x)2
2"+ e¥sinx — e¥cos x
B (2 + sinx)?
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(8.3) Derivatives of Trigonometric Functions

Example (Quotient Rule, Natural Exponential Function and
Sine)

, . e*
Differentiate y = 5 renx
Quotient Rule:

dy (2+sinx) L (e¥) — (&) & (2+5sinx)
dx (2 + sin x)?
(2+sinx) (e*) — (e*) (cos x)
(2 + sin x)2
2"+ e¥sinx — e¥cos x
B (2 + sinx)?
€*(2 + sin x — cos x)
(2 + sin x)?
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(8.3) Derivatives of Trigonometric Functions

Example (Trigonometric limit)

Find lim —2X
x—0 Sin 9x
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(8.3) Derivatives of Trigonometric Functions

Example (Trigonometric limit)

Find lim im C .
x—0 Sin 9x )Hosm9x 9
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(8.3) Derivatives of Trigonometric Functions

Example (Trigonometric limit)

Find  lim —2%— — [im 2%_ .2
x—08iN9Xx x—0sin9x 9

m2.
x—09 sin9x
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(8.3) Derivatives of Trigonometric Functions

Example (Trigonometric limit)

P [ e i 2
x—0 Sin 9x )Hosm9x 9

~ lim 2  9x
x—»09  sin9x
i 2 1
- XILnO g  sin9%
9x
FreeCalc Math 140 Lecture 12

March 14, 2013



(8.3) Derivatives of Trigonometric Functions

Example (Trigonometric limit)

Fie [ e i 2
x—0SiNn9x x—0sin9x 9
2o
 x=09 sin9x
i 2 1 i 2 1
= Mg snox — g g sne
9x 0
Let 6 = 9x.

FreeCalc Math 140 Lecture 12 March 14, 2013



(8.3) Derivatives of Trigonometric Functions

Example (Trigonometric limit)

Find  lim —2%— — [im 2%_ .2
x—08iN9Xx x—0sin9x 9
.2 9x
= lim = - —
X—0 sin 9x
im 2.1 im 2.1
= Mg snox — Mg sne
9x 0
Let 6 = 9x.

As x—0, 60—
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(8.3) Derivatives of Trigonometric Functions

Example (Trigonometric limit)

. . 2x 2x 9
Find lim — = |lim — iy
x—0S8in9x x—0sSin9x 9
.2 9x
= |lim = - —
x—0 sin9x
i 2 1 I 2 1
= b9 snox  4Mbg sing
9x [
Let 6 =9x.
As x—0, 6—0.
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(8.3) Derivatives of Trigonometric Functions

Example (Trigonometric limit)

. 2Xx . 2x 9
Find lim = lim — - =
x—08in9x x—0sin9x 9
~ lim 2 9x
- x=09 sin9x
— iim 2 1 i 2 1
= b9 “snsx — ghg sne-
T Ox [Z]
Let 6 =9x.
As x—0, 6—0.
2x 2 1
Then lim S
x-0SiN9Xx 9 limg_,o 5%
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(8.3) Derivatives of Trigonometric Functions

Example (Trigonometric limit)

Tl M = [ L
x—08in9x x—0sin9x 9
— im 2 9x
= 209 sinox
.2 1 2 1
:)I(ino@@:gl—%g'gﬂ
9x [
Let 6 =9x.
As x—0, 6—0.
Tien T g%
x—>08in9x 9 limg_,q 5%
2 1
=3
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(8.3) Derivatives of Trigonometric Functions

Example (Trigonometric limit)

Tl M = [ L
x—08in9x x—0sin9x 9
— im 2 9x
= 209 sinox
.2 1 2 1
:)I(ino@@:gl—%g'gﬂ
9x [
Let 6 =9x.
As x—0, 6—0.
Tien T g%
x—>08in9x 9 limg_,q 5%
2 1
=57
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(8.3) Derivatives of Trigonometric Functions

Example (Trigonometric limit)

Tl M = [ L
x—08in9x x—0sin9x 9
— im 2 9x
_XIAOQ sin 9x
.2 1 2 1
:)I(ino@@:gl—%g'gﬂ
9x [
Let 6 =9x.
As x—0, 6—0.
Tien T g%
x—>08in9x 9 limg_,o $5¢
21 2
9 1 9
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(8.3) Derivatives of Trigonometric Functions

The same techniques we used to find the derivative of sin x can also
be used to find the derivative of cos x.

Theorem (The Derivative of cos x)

d .
— COSX = —Ssinx
dx
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(8.3) Derivatives of Trigonometric Functions

Example (Product Rule, with Cosine)

Differentiate  f(x) = x cos x.
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(8.3) Derivatives of Trigonometric Functions

Example (Product Rule, with Cosine)

Differentiate  f(x) = x cos x.

Product Rule: f'(x) = (x) dix (cos x) + (cos x) c;j_x (x)
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(8.3) Derivatives of Trigonometric Functions

Example (Product Rule, with Cosine)
Differentiate  f(x) = x cos x.
Product Rule: f'(x) = (x) o

d
dx (cos x) + (cos x) dx (x)
= () (

) + (cosx) ()
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(8.3) Derivatives of Trigonometric Functions

Example (Product Rule, with Cosine)
Differentiate  f(x) = x cos x.
Product Rule: f'(x) = (x) d (cos x) + (cos x) c;j_x (x)

dx
= (x) (—sinx) + (cos x) ( )
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(8.3) Derivatives of Trigonometric Functions

Example (Product Rule, with Cosine)
Differentiate  f(x) = x cos x.
D d d
Product Rule: f'(x) = (x) dx (cos x) + (cos x) dx (x)
= (x) (—sinx) + (cosx) ()
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(8.3) Derivatives of Trigonometric Functions

Example (Product Rule, with Cosine)
Differentiate  f(x) = x cos x.
Product Rule: f'(x) = (x) dix (cos x) + (cos x) d (x)

dx
= (x) (—sinx) + (cosx) (1)
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(8.3) Derivatives of Trigonometric Functions

Example (Product Rule, with Cosine)

Differentiate  f(x) = x cos x.
D d d
Product Rule: f'(x) = (x) dx (cos x) + (cos x) dx (x)

= (x) (—sinx) + (cosx) (1)
= —Xxsin x + cos X.

FreeCalc Math 140 Lecture 12 March 14, 2013



(3.3) Derivatives of Trigonometric Functions

Theorem (The Derivative of Tangent)

d _ cac?
a(tan X) = sec” Xx.

Proof.
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(3.3) Derivatives of Trigonometric Functions

Theorem (The Derivative of Tangent)

d _ cac?
a(tan X) = sec” Xx.

Proof.

Let y=tanx =

FreeCalc Math 140 Lecture 12 March 14, 2013



(3.3) Derivatives of Trigonometric Functions

Theorem (The Derivative of Tangent)

d _ cac?
a(tan X) = sec” Xx.

Proof.
sin x
COS X

Let y=tanx =
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(3.3) Derivatives of Trigonometric Functions

Theorem (The Derivative of Tangent)

d _ cac?
a(tan X) = sec” Xx.

Proof.
Let y=tanx = SInx,
CcOS X
Quotient Rule:
dy  (cosx) & (sinx) — (sinx) & (cos x)
dx (cos x)?
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(3.3) Derivatives of Trigonometric Functions

Theorem (The Derivative of Tangent)

d _ cac?
a(tan X) = sec” Xx.

Proof.
Let y=tanx =
Quotient Rule:
dy _
dx

FreeCalc Math 140

sin x

Ccos X

(cos x) & (sinx) — (sinx) & (cos x)
(cos x)?

(cos x) ( ) —(sinx) ( )
coS? X
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(3.3) Derivatives of Trigonometric Functions

Theorem (The Derivative of Tangent)

d _ cac?
a(tan X) = sec” Xx.

Proof.
Let y=tanx =
Quotient Rule:
dy _
dx

FreeCalc Math 140

sin x

cos X

(cos x) & (sinx) — (sinx) & (cos x)
(cos x)?

(cosx) (cosx) — (sinx) ( )
cos? x
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(3.3) Derivatives of Trigonometric Functions

Theorem (The Derivative of Tangent)

d — epp2
a(tan X) = sec” Xx.

Proof.
Let y=tanx =
Quotient Rule:
dy _
dx

FreeCalc Math 140

sin x

cosx’

(cos x) & (sinx) — (sinx) & (cos x)
(cos x)?

(cos x) (cos x) — (sinx) ( )
cos? x
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(3.3) Derivatives of Trigonometric Functions

Theorem (The Derivative of Tangent)

d — epp2
a(tan X) = sec” Xx.

Proof.
Let y=tanx =
Quotient Rule:
dy _
dx

FreeCalc Math 140

sin x

cosx’

(cos x) & (sinx) — (sinx) & (cos x)
(cos x)?

(cos x) (cos x) — (sinx) (— sinx)
cos? x
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(3.3) Derivatives of Trigonometric Functions

Theorem (The Derivative of Tangent)

Proof.
Let y=tanx =
Quotient Rule:
dy _
dx

FreeCalc Math 140

d — epp2
a(tan X) = sec” Xx.

sin x
Ccos X

(cos x) & (sinx) — (sinx) & (cos x)

(cos x)?
(cosx) (cosx) — (sinx) (—sinx)
cos? x
cos? x + sin® x
cos? x
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(3.3) Derivatives of Trigonometric Functions

Theorem (The Derivative of Tangent)

Proof.
Let y=tanx =
Quotient Rule:
dy _
dx

FreeCalc Math 140

d — epp2
a(tan X) = sec” Xx.

sin x
Ccos X

(cos x) & (sinx) — (sinx) & (cos x)

(cos x)?
(cosx) (cosx) — (sinx) (—sinx)
cos? x
cos?x +sin®x
cos? X ~ cos? X
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(3.3) Derivatives of Trigonometric Functions

Theorem (The Derivative of Tangent)

Proof.
Let y=tanx =
Quotient Rule:
dy _
dx

FreeCalc Math 140

d — epp2
a(tan X) = sec” Xx.

sin x
Ccos X

(cos x) & (sinx) — (sinx) & (cos x)

(cos x)?
(cosx) (cosx) — (sinx) (—sinx)
cos? x
cos?x +sinx 1
cos? X ~ cos? x
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(3.3) Derivatives of Trigonometric Functions

Theorem (The Derivative of Tangent)

Proof.
Let y=tanx =
Quotient Rule:
dy _
dx

FreeCalc Math 140

d _ cac?
a(tan X) = sec” Xx.

sin x

cos X’

(cos x) & (sinx) — (sinx) & (cos x)
(cos x)?

(cosx) (cosx) — (sinx) (—sinx)
cos? x

cos?x +sin®x 1

cos? x ~ cos? x
sec? x.
L]
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