Math 140 Lecture 13

Greg Maloney

with modifications by T. Milev

University of Massachusetts Boston

March 26, 2013

Derivatives of Trigonometric Functions

$$\frac{d}{dx}(\sin x) = \cos x \qquad \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x$$
$$\frac{d}{dx}(\cos x) = -\sin x \qquad \qquad \frac{d}{dx}(\sec x) = \sec x \tan x$$
$$\frac{d}{dx}(\tan x) = \sec^2 x \qquad \qquad \frac{d}{dx}(\cot x) = -\csc^2 x$$

Differentiate $y = \frac{\sec x}{1 + \tan x}$.

Differentiate $y = \frac{\sec x}{1 + \tan x}$.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(1 + \tan x)\frac{\mathrm{d}}{\mathrm{d}x}(\sec x) - (\sec x)\frac{\mathrm{d}}{\mathrm{d}x}(1 + \tan x)}{(1 + \tan x)^2}$$

Differentiate
$$y = \frac{\sec x}{1 + \tan x}$$

$$\frac{dy}{dx} = \frac{(1 + \tan x) \frac{d}{dx} (\sec x) - (\sec x) \frac{d}{dx} (1 + \tan x)}{(1 + \tan x)^2}$$
$$= \frac{(1 + \tan x) () - (\sec x) ()}{(1 + \tan x)^2}$$

Differentiate
$$y = \frac{\sec x}{1 + \tan x}$$

$$\frac{dy}{dx} = \frac{(1 + \tan x) \frac{d}{dx} (\sec x) - (\sec x) \frac{d}{dx} (1 + \tan x)}{(1 + \tan x)^2}$$
$$= \frac{(1 + \tan x) (\sec x \tan x) - (\sec x) ()}{(1 + \tan x)^2}$$

Differentiate
$$y = \frac{\sec x}{1 + \tan x}$$

$$\frac{dy}{dx} = \frac{(1 + \tan x) \frac{d}{dx} (\sec x) - (\sec x) \frac{d}{dx} (1 + \tan x)}{(1 + \tan x)^2}$$
$$= \frac{(1 + \tan x) (\sec x \tan x) - (\sec x) ()}{(1 + \tan x)^2}$$

Differentiate $y = \frac{\sec x}{1 + \tan x}$. Quotient Rule:

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(1+\tan x)\frac{\mathrm{d}}{\mathrm{d}x}(\sec x) - (\sec x)\frac{\mathrm{d}}{\mathrm{d}x}(1+\tan x)}{(1+\tan x)^2}$ $= \frac{(1+\tan x)(\sec x\tan x) - (\sec x)(\sec^2 x)}{(1+\tan x)^2}$

Differentiate
$$y = \frac{\sec x}{1 + \tan x}$$

$$\frac{dy}{dx} = \frac{(1 + \tan x) \frac{d}{dx} (\sec x) - (\sec x) \frac{d}{dx} (1 + \tan x)}{(1 + \tan x)^2}$$
$$= \frac{(1 + \tan x) (\sec x \tan x) - (\sec x) (\sec^2 x)}{(1 + \tan x)^2}$$
$$= \frac{\sec x (\tan x + \tan^2 x - \sec^2 x)}{(1 + \tan x)^2}$$

Differentiate
$$y = \frac{\sec x}{1 + \tan x}$$

Quotient Rule:

 $\frac{dy}{dx} = \frac{(1 + \tan x) \frac{d}{dx} (\sec x) - (\sec x) \frac{d}{dx} (1 + \tan x)}{(1 + \tan x)^2}$ $= \frac{(1 + \tan x) (\sec x \tan x) - (\sec x) (\sec^2 x)}{(1 + \tan x)^2}$ $= \frac{\sec x (\tan x + \tan^2 x - \sec^2 x)}{(1 + \tan x)^2}$ $= \frac{\sec x (\tan x)}{(1 + \tan x)^2}.$

Differentiate
$$y = \frac{\sec x}{1 + \tan x}$$

Quotient Rule:

 $\frac{dy}{dx} = \frac{(1 + \tan x) \frac{d}{dx} (\sec x) - (\sec x) \frac{d}{dx} (1 + \tan x)}{(1 + \tan x)^2}$ $= \frac{(1 + \tan x) (\sec x \tan x) - (\sec x) (\sec^2 x)}{(1 + \tan x)^2}$ $= \frac{\sec x (\tan x + \tan^2 x - \sec^2 x)}{(1 + \tan x)^2}$ $= \frac{\sec x (\tan x - 1)}{(1 + \tan x)^2}.$

Differentiate:

$$y = \theta e^{\theta} (\tan \theta + \sec \theta).$$

Differentiate:

$$y = \theta e^{\theta}(\tan \theta + \sec \theta).$$

$$y' = \theta e^{\theta} \frac{d}{d\theta} (\tan \theta + \sec \theta) + \frac{d}{d\theta} (\theta e^{\theta}) (\tan \theta + \sec \theta)$$

Differentiate:

$$y = \theta e^{\theta}(\tan \theta + \sec \theta).$$

$$y' = \theta e^{\theta} \frac{d}{d\theta} (\tan \theta + \sec \theta) + \frac{d}{d\theta} (\theta e^{\theta}) (\tan \theta + \sec \theta)$$

$$= \theta e^{\theta} () + ()(\tan \theta + \sec \theta)$$

Differentiate:

$$y = \theta e^{\theta}(\tan \theta + \sec \theta).$$

Product Rule:

$$y' = \theta e^{\theta} \frac{d}{d\theta} (\tan \theta + \sec \theta) + \frac{d}{d\theta} (\theta e^{\theta}) (\tan \theta + \sec \theta)$$

 $=\theta e^{\theta} (\sec^2 \theta + \tan \theta \sec \theta) + () (\tan \theta + \sec \theta)$

Differentiate:

$$y = \theta e^{\theta}(\tan \theta + \sec \theta).$$

$$y' = \theta e^{\theta} \frac{d}{d\theta} (\tan \theta + \sec \theta) + \frac{d}{d\theta} (\theta e^{\theta}) (\tan \theta + \sec \theta)$$

$$= \theta e^{\theta} (\sec^2 \theta + \tan \theta \sec \theta) + () (\tan \theta + \sec \theta)$$

Differentiate:

$$y = \theta e^{\theta} (\tan \theta + \sec \theta).$$

Product Rule:

$$y' = \theta e^{\theta} \frac{d}{d\theta} (\tan \theta + \sec \theta) + \frac{d}{d\theta} (\theta e^{\theta}) (\tan \theta + \sec \theta)$$

$$=\theta e^{\theta}(\sec^2\theta + \tan\theta \sec\theta) + (\theta \frac{d}{d\theta}(e^{\theta}) + \frac{d}{d\theta}(\theta)e^{\theta})(\tan\theta + \sec\theta)$$

Differentiate:

$$y = \theta e^{\theta} (\tan \theta + \sec \theta).$$

Product Rule:

$$y' = \theta e^{\theta} \frac{d}{d\theta} (\tan \theta + \sec \theta) + \frac{d}{d\theta} (\theta e^{\theta}) (\tan \theta + \sec \theta)$$

$$=\theta e^{\theta} (\sec^2 \theta + \tan \theta \sec \theta) + (\theta \frac{d}{d\theta} (e^{\theta}) + \frac{d}{d\theta} (\theta) e^{\theta}) (\tan \theta + \sec \theta)$$
$$= \theta e^{\theta} (\sec^2 \theta + \tan \theta \sec \theta) + (\theta (-) + (-) e^{\theta}) (\tan \theta + \sec \theta)$$

Differentiate:

$$y = \theta e^{\theta} (\tan \theta + \sec \theta).$$

Product Rule:

$$y' = \theta e^{\theta} \frac{d}{d\theta} (\tan \theta + \sec \theta) + \frac{d}{d\theta} (\theta e^{\theta}) (\tan \theta + \sec \theta)$$

$$=\theta e^{\theta} (\sec^2 \theta + \tan \theta \sec \theta) + (\theta \frac{d}{d\theta} (e^{\theta}) + \frac{d}{d\theta} (\theta) e^{\theta}) (\tan \theta + \sec \theta)$$
$$= \theta e^{\theta} (\sec^2 \theta + \tan \theta \sec \theta) + (\theta (e^{\theta}) + (\theta) e^{\theta}) (\tan \theta + \sec \theta)$$

Differentiate:

$$y = \theta e^{\theta} (\tan \theta + \sec \theta).$$

Product Rule:

$$y' = \theta e^{\theta} \frac{d}{d\theta} (\tan \theta + \sec \theta) + \frac{d}{d\theta} (\theta e^{\theta}) (\tan \theta + \sec \theta)$$

$$=\theta e^{\theta}(\sec^2\theta + \tan\theta \sec\theta) + (\theta \frac{d}{d\theta}(e^{\theta}) + \frac{d}{d\theta}(\theta)e^{\theta})(\tan\theta + \sec\theta)$$
$$= \theta e^{\theta}(\sec^2\theta + \tan\theta \sec\theta) + (\theta(e^{\theta}) + (-)e^{\theta})(\tan\theta + \sec\theta)$$

Differentiate:

$$y = \theta e^{\theta} (\tan \theta + \sec \theta).$$

Product Rule:

$$y' = \theta e^{\theta} \frac{d}{d\theta} (\tan \theta + \sec \theta) + \frac{d}{d\theta} (\theta e^{\theta}) (\tan \theta + \sec \theta)$$

$$=\theta e^{\theta}(\sec^2\theta + \tan\theta \sec\theta) + (\theta \frac{d}{d\theta}(e^{\theta}) + \frac{d}{d\theta}(\theta)e^{\theta})(\tan\theta + \sec\theta)$$
$$= \theta e^{\theta}(\sec^2\theta + \tan\theta \sec\theta) + (\theta(e^{\theta}) + (1)e^{\theta})(\tan\theta + \sec\theta)$$

Differentiate:

$$y = \theta e^{\theta} (\tan \theta + \sec \theta).$$

Product Rule:

$$y' = \theta e^{\theta} \frac{d}{d\theta} (\tan \theta + \sec \theta) + \frac{d}{d\theta} (\theta e^{\theta}) (\tan \theta + \sec \theta)$$

$$= \theta e^{\theta} (\sec^2 \theta + \tan \theta \sec \theta) + (\theta \frac{d}{d\theta} (e^{\theta}) + \frac{d}{d\theta} (\theta) e^{\theta}) (\tan \theta + \sec \theta)$$
$$= \theta e^{\theta} (\sec^2 \theta + \tan \theta \sec \theta) + (\theta (e^{\theta}) + (1) e^{\theta}) (\tan \theta + \sec \theta)$$
$$= \theta e^{\theta} \sec \theta (\sec \theta + \tan \theta) + e^{\theta} (\theta + 1) (\tan \theta + \sec \theta)$$

Differentiate:

$$y = \theta e^{\theta} (\tan \theta + \sec \theta).$$

Product Rule:

$$y' = \theta e^{\theta} \frac{d}{d\theta} (\tan \theta + \sec \theta) + \frac{d}{d\theta} (\theta e^{\theta}) (\tan \theta + \sec \theta)$$

$$= \theta e^{\theta} (\sec^2 \theta + \tan \theta \sec \theta) + (\theta \frac{d}{d\theta} (e^{\theta}) + \frac{d}{d\theta} (\theta) e^{\theta}) (\tan \theta + \sec \theta)$$

= $\theta e^{\theta} (\sec^2 \theta + \tan \theta \sec \theta) + (\theta (e^{\theta}) + (1) e^{\theta}) (\tan \theta + \sec \theta)$
= $\theta e^{\theta} \sec \theta (\sec \theta + \tan \theta) + e^{\theta} (\theta + 1) (\tan \theta + \sec \theta)$
= $(\theta \sec \theta + \theta + 1) e^{\theta} (\tan \theta + \sec \theta).$

Find the 27th derivative of $f(x) = \cos x$.

Find the 27th derivative of $f(x) = \cos x$. f'(x) = f''(x) = f'''(x) = $f^{(4)}(x) =$ $f^{(5)}(x) =$

Find the 27th derivative of $f(x) = \cos x$. f'(x) = f''(x) = f'''(x) = $f^{(4)}(x) =$ $f^{(5)}(x) =$

Find the 27th derivative of $f(x) = \cos x$. $f'(x) = -\sin x$ f''(x) = f'''(x) = $f^{(4)}(x) =$ $f^{(5)}(x) =$

Find the 27th derivative of $f(x) = \cos x$. $f'(x) = -\sin x$ f''(x) = f'''(x) = $f^{(4)}(x) =$ $f^{(5)}(x) =$

Find the 27th derivative of $f(x) = \cos x$. $f'(x) = -\sin x$ $f''(x) = -\cos x$ f'''(x) = $f^{(4)}(x) =$ $f^{(5)}(x) =$

Find the 27th derivative of $f(x) = \cos x$. $f'(x) = -\sin x$ $f''(x) = -\cos x$ f'''(x) = $f^{(4)}(x) =$ $f^{(5)}(x) =$

Find the 27th derivative of $f(x) = \cos x$. $f'(x) = -\sin x$ $f''(x) = -\cos x$ $f'''(x) = \sin x$ $f^{(4)}(x) =$ $f^{(5)}(x) =$

Find the 27th derivative of $f(x) = \cos x$. $f'(x) = -\sin x$ $f''(x) = -\cos x$ $f'''(x) = \sin x$ $f^{(4)}(x) =$ $f^{(5)}(x) =$

Find the 27th derivative of $f(x) = \cos x$. $f'(x) = -\sin x$ $f''(x) = -\cos x$ $f'''(x) = \sin x$ $f^{(4)}(x) = \cos x$ $f^{(5)}(x) =$

Find the 27th derivative of $f(x) = \cos x$. $f'(x) = -\sin x$ $f''(x) = -\cos x$ $f'''(x) = \sin x$ $f^{(4)}(x) = \cos x$ $f^{(5)}(x) =$
Find the 27th derivative of $f(x) = \cos x$. $f'(x) = -\sin x$ $f''(x) = -\cos x$ $f'''(x) = \sin x$ $f^{(4)}(x) = \cos x$ $f^{(5)}(x) = -\sin x$

Find the 27th derivative of $f(x) = \cos x$. $f'(x) = -\sin x$ $f''(x) = -\cos x$ $f'''(x) = \sin x$ $f^{(4)}(x) = \cos x$ $f^{(5)}(x) = -\sin x$

• The derivatives repeat in a cycle of length 4.

Find the 27th derivative of $f(x) = \cos x$. $f'(x) = -\sin x$ $f''(x) = -\cos x$ $f'''(x) = \sin x$ $f^{(4)}(x) = \cos x$ $f^{(5)}(x) = -\sin x$

The derivatives repeat in a cycle of length 4.
f⁽²⁴⁾(x) = .

Find the 27th derivative of $f(x) = \cos x$. $f'(x) = -\sin x$ $f''(x) = -\cos x$ $f'''(x) = \sin x$ $f^{(4)}(x) = \cos x$ $f^{(5)}(x) = -\sin x$

The derivatives repeat in a cycle of length 4.
f⁽²⁴⁾(x) = cos x.

Find the 27th derivative of $f(x) = \cos x$. $f'(x) = -\sin x$ $f''(x) = -\cos x$ $f'''(x) = \sin x$ $f^{(4)}(x) = \cos x$ $f^{(5)}(x) = -\sin x$

- The derivatives repeat in a cycle of length 4.
- $f^{(24)}(x) = \cos x$.
- Differentiate three more times: $f^{(27)}(x) =$

Find the 27th derivative of $f(x) = \cos x$. $f'(x) = -\sin x$ $f''(x) = -\cos x$ $f'''(x) = \sin x$ $f^{(4)}(x) = \cos x$ $f^{(5)}(x) = -\sin x$

- The derivatives repeat in a cycle of length 4.
- $f^{(24)}(x) = \cos x$.
- Differentiate three more times: $f^{(27)}(x) = \sin x$.

• What is the derivative of $F(x) = \sqrt{x^2 + 1}$?

- What is the derivative of $F(x) = \sqrt{x^2 + 1}$?
- The formulas we have learned don't tell us how to solve this.

- What is the derivative of $F(x) = \sqrt{x^2 + 1}$?
- The formulas we have learned don't tell us how to solve this.
- *F* is a composite function $f \circ g$: .
- y = f(u) =
- u = g(x) = .
- Then y = F(x) = f(g(x)) =

- What is the derivative of $F(x) = \sqrt{x^2 + 1}$?
- The formulas we have learned don't tell us how to solve this.
- *F* is a composite function $f \circ g$:
- y = f(u) =.
- u = g(x) =
- Then y = F(x) = f(g(x)) =

- What is the derivative of $F(x) = \sqrt{x^2 + 1}$?
- The formulas we have learned don't tell us how to solve this.
- *F* is a composite function $f \circ g$:
- $y = f(u) = \sqrt{u}$.
- u = g(x) =
- Then y = F(x) = f(g(x)) =

- What is the derivative of $F(x) = \sqrt{x^2 + 1}$?
- The formulas we have learned don't tell us how to solve this.
- *F* is a composite function $f \circ g$:
- $y = f(u) = \sqrt{u}$.
- u = g(x) =

• Then
$$y = F(x) = f(g(x)) =$$

- What is the derivative of $F(x) = \sqrt{x^2 + 1}$?
- The formulas we have learned don't tell us how to solve this.
- *F* is a composite function $f \circ g$:
- $y = f(u) = \sqrt{u}$.
- $u = g(x) = x^2 + 1$.

• Then
$$y = F(x) = f(g(x)) =$$

- What is the derivative of $F(x) = \sqrt{x^2 + 1}$?
- The formulas we have learned don't tell us how to solve this.
- *F* is a composite function *f* \circ *g*:
- $y = f(u) = \sqrt{u}$.
- $u = g(x) = x^2 + 1$.
- Then $y = F(x) = f(g(x)) = f(x^2 + 1) =$

- What is the derivative of $F(x) = \sqrt{x^2 + 1}$?
- The formulas we have learned don't tell us how to solve this.
- *F* is a composite function *f* \circ *g*:
- $y = f(u) = \sqrt{u}$.
- $u = g(x) = x^2 + 1$.
- Then $y = F(x) = f(g(x)) = f(x^2 + 1) = \sqrt{x^2 + 1}$.

- What is the derivative of $F(x) = \sqrt{x^2 + 1}$?
- The formulas we have learned don't tell us how to solve this.
- *F* is a composite function *f* \circ *g*:
- $y = f(u) = \sqrt{u}$.
- $u = g(x) = x^2 + 1$.
- Then $y = F(x) = f(g(x)) = f(x^2 + 1) = \sqrt{x^2 + 1}$.

• We know the derivatives of *f* and *g*:

.

- f'(u) =
- g'(x) =.

- What is the derivative of $F(x) = \sqrt{x^2 + 1}$?
- The formulas we have learned don't tell us how to solve this.
- *F* is a composite function $f \circ g$:
- $y = f(u) = \sqrt{u}$.
- $u = g(x) = x^2 + 1$.
- Then $y = F(x) = f(g(x)) = f(x^2 + 1) = \sqrt{x^2 + 1}$.

• We know the derivatives of *f* and *g*:

- f'(u) =
- g'(x) =.

- What is the derivative of $F(x) = \sqrt{x^2 + 1}$?
- The formulas we have learned don't tell us how to solve this.
- *F* is a composite function $f \circ g$:
- $y = f(u) = \sqrt{u}$.
- $u = g(x) = x^2 + 1$.
- Then $y = F(x) = f(g(x)) = f(x^2 + 1) = \sqrt{x^2 + 1}$.
- We know the derivatives of *f* and *g*:
- $f'(u) = \frac{1}{2}u^{-1/2}$. • g'(x) =.

- What is the derivative of $F(x) = \sqrt{x^2 + 1}$?
- The formulas we have learned don't tell us how to solve this.
- *F* is a composite function *f* \circ *g*:
- $y = f(u) = \sqrt{u}$.
- $u = g(x) = x^2 + 1$.
- Then $y = F(x) = f(g(x)) = f(x^2 + 1) = \sqrt{x^2 + 1}$.
- We know the derivatives of *f* and *g*:

•
$$f'(u) = \frac{1}{2}u^{-1/2}$$
.
• $g'(x) = .$

- What is the derivative of $F(x) = \sqrt{x^2 + 1}$?
- The formulas we have learned don't tell us how to solve this.
- *F* is a composite function $f \circ g$:
- $y = f(u) = \sqrt{u}$.
- $u = g(x) = x^2 + 1$.
- Then $y = F(x) = f(g(x)) = f(x^2 + 1) = \sqrt{x^2 + 1}$.
- We know the derivatives of *f* and *g*:

•
$$f'(u) = \frac{1}{2}u^{-1/2}$$

• g'(x) = 2x.

- What is the derivative of $F(x) = \sqrt{x^2 + 1}$?
- The formulas we have learned don't tell us how to solve this.
- *F* is a composite function *f* \circ *g*:
- $y = f(u) = \sqrt{u}$.
- $u = g(x) = x^2 + 1$.
- Then $y = F(x) = f(g(x)) = f(x^2 + 1) = \sqrt{x^2 + 1}$.
- We know the derivatives of *f* and *g*:

•
$$f'(u) = \frac{1}{2}u^{-1/2}$$
.

- g'(x) = 2x.
- It would be nice if we could find the derivative of *F* in terms of the derivatives of *y* and *u*.

- What is the derivative of $F(x) = \sqrt{x^2 + 1}$?
- The formulas we have learned don't tell us how to solve this.
- *F* is a composite function *f* \circ *g*:
- $y = f(u) = \sqrt{u}$.
- $u = g(x) = x^2 + 1$.
- Then $y = F(x) = f(g(x)) = f(x^2 + 1) = \sqrt{x^2 + 1}$.
- We know the derivatives of *f* and *g*:

•
$$f'(u) = \frac{1}{2}u^{-1/2}$$
.

- g'(x) = 2x.
- It would be nice if we could find the derivative of *F* in terms of the derivatives of *y* and *u*.
- It turns out that the derivative of the composition *f* ∘ *g* is the product of the derivative of *f* and the derivative of *g*.

- What is the derivative of $F(x) = \sqrt{x^2 + 1}$?
- The formulas we have learned don't tell us how to solve this.
- *F* is a composite function $f \circ g$:
- $y = f(u) = \sqrt{u}$.
- $u = g(x) = x^2 + 1$.
- Then $y = F(x) = f(g(x)) = f(x^2 + 1) = \sqrt{x^2 + 1}$.
- We know the derivatives of *f* and *g*:

•
$$f'(u) = \frac{1}{2}u^{-1/2}$$
.

- g'(x) = 2x.
- It would be nice if we could find the derivative of *F* in terms of the derivatives of *y* and *u*.
- It turns out that the derivative of the composition *f* ∘ *g* is the product of the derivative of *f* and the derivative of *g*.
- This important fact is called the Chain Rule.

If *g* is differentiable at *x* and *f* is differentiable at g(x), then the composite function $F = f \circ g$ defined by F(x) = f(g(x)) is differentiable at *x* and *F'* is given by the product

$$F'(x) = f'(g(x)) \cdot g'(x)$$

In Leibniz notation, if y = f(u) and u = g(x) are both differentiable functions, then

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u}\frac{\mathrm{d}u}{\mathrm{d}x}$$

If *g* is differentiable at *x* and *f* is differentiable at g(x), then the composite function $F = f \circ g$ defined by F(x) = f(g(x)) is differentiable at *x* and *F'* is given by the product

$$F'(x) = f'(g(x)) \cdot g'(x)$$

In Leibniz notation, if y = f(u) and u = g(x) are both differentiable functions, then

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u}\frac{\mathrm{d}u}{\mathrm{d}x}$$

We will not prove this in class, but a proof can be found in the textbook.

Differentiate $f(x) = \sqrt{x^2 + 1}$.

```
Differentiate f(x) = \sqrt{x^2 + 1}.
Let h(x) =
Let g(x) =
Then f(x) = g(h(x)).
```

C

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $h(x) = x^2 + 1$.
Let $g(x) =$
Then $f(x) = g(h(x))$.

C

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $h(x) = x^2 + 1$.
Let $g(x) =$
Then $f(x) = g(h(x))$.

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $h(x) = x^2 + 1$.
Let $g(x) = \sqrt{x}$.
Then $f(x) = g(h(x))$.

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $h(x) = x^2 + 1$.
Let $g(x) = \sqrt{x}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $h(x) = x^2 + 1$.
Let $g(x) = \sqrt{x}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= \begin{pmatrix} \end{pmatrix} ($

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $h(x) = x^2 + 1$.
Let $g(x) = \sqrt{x}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= \left(\frac{1}{2\sqrt{h(x)}}\right)$ (

Differentiate $f(x) = \sqrt{x^2 + 1}$. Let $h(x) = x^2 + 1$. Let $g(x) = \sqrt{x}$. Then f(x) = g(h(x)). Chain Rule: f'(x) = g'(h(x))h'(x) $= \left(\frac{1}{2\sqrt{h(x)}}\right)$ ()

Differentiate $f(x) = \sqrt{x^2 + 1}$. Let $h(x) = x^2 + 1$. Let $g(x) = \sqrt{x}$. Then f(x) = g(h(x)). Chain Rule: f'(x) = g'(h(x))h'(x) $= \left(\frac{1}{2\sqrt{h(x)}}\right)$ (2x)

Differentiate $f(x) = \sqrt{x^2 + 1}$. Let $h(x) = x^2 + 1$. Let $g(x) = \sqrt{x}$. Then f(x) = g(h(x)). Chain Rule: f'(x) = g'(h(x))h'(x) $= \left(\frac{1}{2\sqrt{h(x)}}\right) (2x)$ $= \frac{x}{\sqrt{x^2 + 1}}.$
Differentiate $y = \cos x^3$.

Differentiate $y = \cos x^3$. Let u =

Differentiate $y = \cos x^3$. Let $u = x^3$.

Differentiate $y = \cos x^3$. Let $u = x^3$. Then $y = \cos u$.

Differentiate $y = \cos x^3$. Let $u = x^3$. Then $y = \cos u$. Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$

Differentiate $y = \cos x^3$. Let $u = x^3$. Then $y = \cos u$. Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ = () ()

Differentiate $y = \cos x^3$. Let $u = x^3$. Then $y = \cos u$. Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ $= (-\sin u) ()$

Differentiate $y = \cos x^3$. Let $u = x^3$. Then $y = \cos u$. Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ $= (-\sin u) ()$

Differentiate $y = \cos x^3$. Let $u = x^3$. Then $y = \cos u$. Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ $= (-\sin u) (3x^2)$

Differentiate $y = \cos x^3$. Let $u = x^3$. Then $y = \cos u$. Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ $= (-\sin u) (3x^2)$ $= -3x^2 \sin x^3$.

Differentiate
$$y = \cos^3 x$$
.

Differentiate $y = \cos^3 x$. Let u =

Differentiate $y = \cos^3 x$. Let $u = \cos x$.

Differentiate $y = \cos^3 x$. Let $u = \cos x$. Then $y = u^3$.

Differentiate $y = \cos^3 x$. Let $u = \cos x$. Then $y = u^3$. Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$

Differentiate $y = \cos^3 x$. Let $u = \cos x$. Then $y = u^3$. Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ $= \begin{pmatrix} \end{pmatrix} \begin{pmatrix} \end{pmatrix} \begin{pmatrix} \end{pmatrix} \end{pmatrix}$

Differentiate $y = \cos^3 x$. Let $u = \cos x$. Then $y = u^3$. Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ $= (3u^2)$ ()

Differentiate $y = \cos^3 x$. Let $u = \cos x$. Then $y = u^3$. Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ $= (3u^2)$ (

Differentiate $y = \cos^3 x$. Let $u = \cos x$. Then $y = u^3$. Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ $= (3u^2)(-\sin x)$

Differentiate
$$y = \cos^3 x$$
.
Let $u = \cos x$.
Then $y = u^3$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$
 $= (3u^2)(-\sin x)^2$
 $= -3\sin x(\cos x)^2$

• In the example $y = \sin^2 x$, the outer function was a power function: $y = u^2$.

- In the example $y = \sin^2 x$, the outer function was a power function: $y = u^2$.
- The derivative was $\frac{dy}{dx} = 2u\frac{du}{dx} = 2\sin x \cos x$.

- In the example $y = \sin^2 x$, the outer function was a power function: $y = u^2$.
- The derivative was $\frac{dy}{dx} = 2u\frac{du}{dx} = 2\sin x \cos x$.
- We can generalize this:

The Power Rule Combined with the Chain Rule If *n* is any real number and u = g(x) is differentiable, then

$$\frac{\mathrm{d}}{\mathrm{d}x}(u^n) = nu^{n-1}\frac{\mathrm{d}u}{\mathrm{d}x}$$

Alternatively,

$$\frac{\mathsf{d}}{\mathsf{d}x}[g(x)]^n = n[g(x)]^{n-1} \cdot g'(x)$$

$$\frac{\mathsf{d}}{\mathsf{d}x}(u^n) = nu^{n-1}\frac{\mathsf{d}u}{\mathsf{d}x}$$

Differentiate
$$y = (x^3 - 1)^{100}$$
.

$$\frac{\mathsf{d}}{\mathsf{d}x}(u^n) = nu^{n-1}\frac{\mathsf{d}u}{\mathsf{d}x}$$

Differentiate
$$y = (x^3 - 1)^{100}$$
.
Let $u =$

$$\frac{\mathsf{d}}{\mathsf{d}x}(u^n) = nu^{n-1}\frac{\mathsf{d}u}{\mathsf{d}x}$$

Differentiate
$$y = (x^3 - 1)^{100}$$
.
Let $u = x^3 - 1$.

$$\frac{\mathsf{d}}{\mathsf{d}x}(u^n) = nu^{n-1}\frac{\mathsf{d}u}{\mathsf{d}x}$$

Differentiate $y = (x^3 - 1)^{100}$. Let $u = x^3 - 1$. Then $y = u^{100}$.

$$\frac{\mathsf{d}}{\mathsf{d}x}(u^n) = nu^{n-1}\frac{\mathsf{d}u}{\mathsf{d}x}$$

Differentiate $y = (x^3 - 1)^{100}$. Let $u = x^3 - 1$. Then $y = u^{100}$. Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$

$$\frac{\mathsf{d}}{\mathsf{d}x}(u^n) = nu^{n-1}\frac{\mathsf{d}u}{\mathsf{d}x}$$

Differentiate $y = (x^3 - 1)^{100}$. Let $u = x^3 - 1$. Then $y = u^{100}$. Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ $= \begin{pmatrix} \end{pmatrix} \begin{pmatrix} \end{pmatrix} \end{pmatrix}$

$$\frac{\mathsf{d}}{\mathsf{d}x}(u^n) = nu^{n-1}\frac{\mathsf{d}u}{\mathsf{d}x}$$

$$\frac{\mathsf{d}}{\mathsf{d}x}(u^n) = nu^{n-1}\frac{\mathsf{d}u}{\mathsf{d}x}$$

$$\frac{\mathsf{d}}{\mathsf{d}x}(u^n) = nu^{n-1}\frac{\mathsf{d}u}{\mathsf{d}x}$$

$$\frac{\mathsf{d}}{\mathsf{d}x}(u^n) = nu^{n-1}\frac{\mathsf{d}u}{\mathsf{d}x}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}[g(x)]^n = n[g(x)]^{n-1} \cdot g'(x)$$

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.

$$\frac{\mathrm{d}}{\mathrm{d}x}[g(x)]^n = n[g(x)]^{n-1} \cdot g'(x)$$

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) =$
Let $g(x) =$
Then $f(x) = g(h(x))$.

$$\frac{\mathrm{d}}{\mathrm{d}x}[g(x)]^n = n[g(x)]^{n-1} \cdot g'(x)$$

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) = x^2 + x + 1$.
Let $g(x) =$
Then $f(x) = g(h(x))$.
$$\frac{\mathrm{d}}{\mathrm{d}x}[g(x)]^n = n[g(x)]^{n-1} \cdot g'(x)$$

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) = x^2 + x + 1$.
Let $g(x) =$
Then $f(x) = g(h(x))$.

$$\frac{\mathrm{d}}{\mathrm{d}x}[g(x)]^n = n[g(x)]^{n-1} \cdot g'(x)$$

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) = x^2 + x + 1$.
Let $g(x) = x^{-1/3}$.
Then $f(x) = g(h(x))$.

$$\frac{\mathrm{d}}{\mathrm{d}x}[g(x)]^n = n[g(x)]^{n-1} \cdot g'(x)$$

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) = x^2 + x + 1$.
Let $g(x) = x^{-1/3}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$

$$\frac{\mathrm{d}}{\mathrm{d}x}[g(x)]^n = n[g(x)]^{n-1} \cdot g'(x)$$

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) = x^2 + x + 1$.
Let $g(x) = x^{-1/3}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= \begin{pmatrix} \end{pmatrix} ($

$$\frac{\mathrm{d}}{\mathrm{d}x}[g(x)]^n = n[g(x)]^{n-1} \cdot g'(x)$$

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) = x^2 + x + 1$.
Let $g(x) = x^{-1/3}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= \left(-\frac{1}{3}(h(x))^{-4/3}\right)$ ()

$$\frac{\mathrm{d}}{\mathrm{d}x}[g(x)]^n = n[g(x)]^{n-1} \cdot g'(x)$$

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) = x^2 + x + 1$.
Let $g(x) = x^{-1/3}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= \left(-\frac{1}{3}(h(x))^{-4/3}\right)$ ()

$$\frac{\mathrm{d}}{\mathrm{d}x}[g(x)]^n = n[g(x)]^{n-1} \cdot g'(x)$$

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) = x^2 + x + 1$.
Let $g(x) = x^{-1/3}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= \left(-\frac{1}{3}(h(x))^{-4/3}\right)(2x + 1)$

$$\frac{\mathrm{d}}{\mathrm{d}x}[g(x)]^n = n[g(x)]^{n-1} \cdot g'(x)$$

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) = x^2 + x + 1$.
Let $g(x) = x^{-1/3}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= \left(-\frac{1}{3}(h(x))^{-4/3}\right)(2x + 1)$
 $= -\frac{2x + 1}{3}(x^2 + x + 1)^{-4/3}$.

Find the derivative of

$$g(t)=\left(\frac{t-2}{2t+1}\right)^9.$$

Find the derivative of

$$g(t)=\left(\frac{t-2}{2t+1}\right)^9.$$

Power Rule and Chain Rule:

$$g'(t) = 9\left(rac{t-2}{2t+1}
ight)^8 rac{\mathsf{d}}{\mathsf{d}t}\left(rac{t-2}{2t+1}
ight)$$

Find the derivative of

$$g(t)=\left(\frac{t-2}{2t+1}\right)^9.$$

Power Rule and Chain Rule:

$$g'(t) = 9\left(\frac{t-2}{2t+1}\right)^8 \frac{\mathsf{d}}{\mathsf{d}t} \left(\frac{t-2}{2t+1}\right)$$

$$=9\left(\frac{t-2}{2t+1}\right)^{8}\frac{(2t+1)\frac{d}{dt}(t-2)-(t-2)\frac{d}{dt}(2t+1)}{(2t+1)^{2}}$$

Find the derivative of

$$g(t)=\left(\frac{t-2}{2t+1}\right)^9.$$

Power Rule and Chain Rule:

$$g'(t) = 9\left(\frac{t-2}{2t+1}\right)^8 \frac{\mathsf{d}}{\mathsf{d}t} \left(\frac{t-2}{2t+1}\right)$$

$$=9\left(\frac{t-2}{2t+1}\right)^{8}\frac{(2t+1)\frac{d}{dt}(t-2)-(t-2)\frac{d}{dt}(2t+1)}{(2t+1)^{2}}$$

Find the derivative of

$$g(t)=\left(\frac{t-2}{2t+1}\right)^9.$$

Power Rule and Chain Rule:

$$g'(t) = 9\left(rac{t-2}{2t+1}
ight)^8 rac{\mathsf{d}}{\mathsf{d}t}\left(rac{t-2}{2t+1}
ight)$$

$$=9\left(\frac{t-2}{2t+1}\right)^{8}\frac{(2t+1)\frac{d}{dt}(t-2)-(t-2)\frac{d}{dt}(2t+1)}{(2t+1)^{2}}$$
$$=9\left(\frac{t-2}{2t+1}\right)^{8}\frac{(2t+1)\cdot-(t-2)\cdot}{(2t+1)^{2}}$$

Find the derivative of

$$g(t)=\left(\frac{t-2}{2t+1}\right)^9.$$

Power Rule and Chain Rule:

$$g'(t) = 9\left(rac{t-2}{2t+1}
ight)^8 rac{\mathsf{d}}{\mathsf{d}t}\left(rac{t-2}{2t+1}
ight)$$

$$=9\left(\frac{t-2}{2t+1}\right)^{8}\frac{(2t+1)\frac{d}{dt}(t-2)-(t-2)\frac{d}{dt}(2t+1)}{(2t+1)^{2}}$$
$$=9\left(\frac{t-2}{2t+1}\right)^{8}\frac{(2t+1)\cdot 1-(t-2)\cdot}{(2t+1)^{2}}$$

Find the derivative of

$$g(t)=\left(\frac{t-2}{2t+1}\right)^9.$$

Power Rule and Chain Rule:

$$g'(t) = 9\left(rac{t-2}{2t+1}
ight)^8 rac{\mathsf{d}}{\mathsf{d}t}\left(rac{t-2}{2t+1}
ight)$$

$$=9\left(\frac{t-2}{2t+1}\right)^{8}\frac{(2t+1)\frac{d}{dt}(t-2)-(t-2)\frac{d}{dt}(2t+1)}{(2t+1)^{2}}$$
$$=9\left(\frac{t-2}{2t+1}\right)^{8}\frac{(2t+1)\cdot 1-(t-2)\cdot}{(2t+1)^{2}}$$

Find the derivative of

$$g(t)=\left(\frac{t-2}{2t+1}\right)^9.$$

Power Rule and Chain Rule:

$$g'(t) = 9\left(rac{t-2}{2t+1}
ight)^8 rac{\mathsf{d}}{\mathsf{d}t}\left(rac{t-2}{2t+1}
ight)$$

$$=9\left(\frac{t-2}{2t+1}\right)^{8}\frac{(2t+1)\frac{d}{dt}(t-2)-(t-2)\frac{d}{dt}(2t+1)}{(2t+1)^{2}}$$
$$=9\left(\frac{t-2}{2t+1}\right)^{8}\frac{(2t+1)\cdot 1-(t-2)\cdot 2}{(2t+1)^{2}}$$

Find the derivative of

$$g(t)=\left(\frac{t-2}{2t+1}\right)^9.$$

Power Rule and Chain Rule:

$$g'(t) = 9\left(rac{t-2}{2t+1}
ight)^8 rac{\mathsf{d}}{\mathsf{d}t}\left(rac{t-2}{2t+1}
ight)$$

Quotient Rule:

$$=9\left(\frac{t-2}{2t+1}\right)^{8}\frac{(2t+1)\frac{d}{dt}(t-2)-(t-2)\frac{d}{dt}(2t+1)}{(2t+1)^{2}}$$
$$=9\left(\frac{t-2}{2t+1}\right)^{8}\frac{(2t+1)\cdot 1-(t-2)\cdot 2}{(2t+1)^{2}}$$
$$=9\left(\frac{t-2}{2t+1}\right)^{8}\frac{2t+1-2t+4}{(2t+1)^{2}}$$

FreeCalc Math 140

Find the derivative of

$$g(t)=\left(\frac{t-2}{2t+1}\right)^9.$$

Power Rule and Chain Rule:

$$g'(t) = 9\left(rac{t-2}{2t+1}
ight)^8 rac{\mathsf{d}}{\mathsf{d}t}\left(rac{t-2}{2t+1}
ight)$$

Quotient Rule:

$$=9\left(\frac{t-2}{2t+1}\right)^{8}\frac{(2t+1)\frac{d}{dt}(t-2)-(t-2)\frac{d}{dt}(2t+1)}{(2t+1)^{2}}$$
$$=9\left(\frac{t-2}{2t+1}\right)^{8}\frac{(2t+1)\cdot 1-(t-2)\cdot 2}{(2t+1)^{2}}$$
$$=9\left(\frac{t-2}{2t+1}\right)^{8}\frac{2t+1-2t+4}{(2t+1)^{2}}=\frac{45(t-2)^{8}}{(2t+1)^{10}}$$

FreeCalc Math 140

Find the derivative of $y = (2x + 1)^5(x^3 - x + 1)^4$.

$$y' = (2x+1)^5 \frac{d}{dx}(x^3-x+1)^4 + (x^3-x+1)^4 \frac{d}{dx}(2x+1)^5$$

$$y' = (2x+1)^5 \frac{d}{dx} (x^3 - x + 1)^4 + (x^3 - x + 1)^4 \frac{d}{dx} (2x+1)^5$$

Chain Rule:

$$= (2x + 1)^5$$

$$+(x^3-x+1)^4$$

Find the derivative of $y = (2x + 1)^5(x^3 - x + 1)^4$. Product Rule:

$$y' = (2x+1)^5 \frac{d}{dx} (x^3 - x + 1)^4 + (x^3 - x + 1)^4 \frac{d}{dx} (2x+1)^5$$

Chain Rule:

$$= (2x+1)^{5}4(x^{3}-x+1)^{3}\frac{d}{dx}(x^{3}-x+1)$$
$$+ (x^{3}-x+1)^{4}$$

$$y' = (2x+1)^5 \frac{d}{dx} (x^3 - x + 1)^4 + (x^3 - x + 1)^4 \frac{d}{dx} (2x+1)^5$$

Chain Rule:

$$= (2x+1)^5 4(x^3 - x + 1)^3 \frac{d}{dx}(x^3 - x + 1) + (x^3 - x + 1)^4$$

$$y' = (2x+1)^5 \frac{d}{dx} (x^3 - x + 1)^4 + (x^3 - x + 1)^4 \frac{d}{dx} (2x+1)^5$$

Chain Rule:

$$= (2x+1)^5 4(x^3-x+1)^3 \frac{d}{dx}(x^3-x+1) + (x^3-x+1)^4 5(2x+1)^4 \frac{d}{dx}(2x+1)$$

$$y' = (2x+1)^5 \frac{d}{dx}(x^3 - x + 1)^4 + (x^3 - x + 1)^4 \frac{d}{dx}(2x+1)^5$$

Chain Rule:

$$= (2x+1)^{5}4(x^{3}-x+1)^{3}\frac{d}{dx}(x^{3}-x+1)$$

+ $(x^{3}-x+1)^{4}5(2x+1)^{4}\frac{d}{dx}(2x+1)$
= $4(2x+1)^{5}(x^{3}-x+1)^{3}() + 5(x^{3}-x+1)^{4}(2x+1)^{4}$

$$y' = (2x+1)^5 \frac{d}{dx}(x^3-x+1)^4 + (x^3-x+1)^4 \frac{d}{dx}(2x+1)^5$$

Chain Rule:

$$= (2x+1)^5 4(x^3 - x + 1)^3 \frac{d}{dx}(x^3 - x + 1) + (x^3 - x + 1)^4 5(2x+1)^4 \frac{d}{dx}(2x+1) = 4(2x+1)^5(x^3 - x + 1)^3(3x^2 - 1) + 5(x^3 - x + 1)^4(2x+1)^4$$

$$y' = (2x+1)^5 \frac{d}{dx}(x^3-x+1)^4 + (x^3-x+1)^4 \frac{d}{dx}(2x+1)^5$$

Chain Rule:

$$= (2x+1)^5 4(x^3 - x + 1)^3 \frac{d}{dx}(x^3 - x + 1) + (x^3 - x + 1)^4 5(2x+1)^4 \frac{d}{dx}(2x+1) = 4(2x+1)^5(x^3 - x + 1)^3(3x^2 - 1) + 5(x^3 - x + 1)^4(2x+1)^4$$

$$y' = (2x+1)^5 \frac{d}{dx}(x^3-x+1)^4 + (x^3-x+1)^4 \frac{d}{dx}(2x+1)^5$$

Chain Rule:

$$= (2x+1)^5 4(x^3 - x + 1)^3 \frac{d}{dx}(x^3 - x + 1) + (x^3 - x + 1)^4 5(2x+1)^4 \frac{d}{dx}(2x+1) = 4(2x+1)^5(x^3 - x + 1)^3(3x^2 - 1) + 5(x^3 - x + 1)^4(2x+1)^4 2$$

$$y' = (2x+1)^5 \frac{d}{dx}(x^3-x+1)^4 + (x^3-x+1)^4 \frac{d}{dx}(2x+1)^5$$

Chain Bule:

$$= (2x+1)^{5}4(x^{3}-x+1)^{3}\frac{d}{dx}(x^{3}-x+1)$$

$$+ (x^{3}-x+1)^{4}5(2x+1)^{4}\frac{d}{dx}(2x+1)$$

$$= 4(2x+1)^{5}(x^{3}-x+1)^{3}(3x^{2}-1) + 5(x^{3}-x+1)^{4}(2x+1)^{4}2$$
Common factor $2(2x+1)^{4}(x^{3}-x+1)^{3}$:
$$= 2(2x+1)^{4}(x^{3}-x+1)^{3}(17x^{3}+6x^{2}-9x+3)$$

Differentiate $y = 2^x$.

Differentiate
$$y = 2^x$$
.
 $y = (e)^x$

Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$

Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$
 $y = e^{x \ln 2}$.

Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$
 $y = e^{x \ln 2}$.
Let $u =$

Ľ

Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.

Ľ

Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$

Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$
 $= ()()()$

Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$
 $= (e^u)($)

Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$
 $= (e^u)($

Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$
 $= (e^u)(\ln 2)$

Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$
 $= (e^u)(\ln 2)$
 $= (e^{(-)})(\ln 2)$

Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$
 $= (e^u)(\ln 2)$
 $= (e^{(x \ln 2)})(\ln 2)$

Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$
 $= (e^u)(\ln 2)$
 $= (e^{(x \ln 2)})(\ln 2)$
 $= (e^{\ln 2})^x(\ln 2)$

Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$
 $y = e^{x \ln 2}$.
Let $u = x \ln 2$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$
 $= (e^u)(\ln 2)$
 $= (e^{\ln 2})^x(\ln 2)$
 $= 2^x \ln 2$.

Theorem (The Derivative of a^x)

$$\frac{d}{dx}(a^x) = a^x \ln a.$$

• We can add more "links" when we use the Chain Rule.

• We can add more "links" when we use the Chain Rule.

- y = f(u)
- u = g(x)
- x = h(t)

- We can add more "links" when we use the Chain Rule.
- y = f(u)
- u = g(x)
- x = h(t)
- Use the Chain Rule twice:

 $\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}u}\frac{\mathrm{d}u}{\mathrm{d}t}$

- We can add more "links" when we use the Chain Rule.
- y = f(u)
- u = g(x)
- x = h(t)
- Use the Chain Rule twice:

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}u}\frac{\mathrm{d}u}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}u}\frac{\mathrm{d}u}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t}$$

Differentiate: $y = \sin \sqrt{10^x + 1}$.

Differentiate: $y = \sin \sqrt{10^x + 1}$.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\sin \sqrt{10^x + 1} \right)$$

Differentiate: $y = \sin \sqrt{10^x + 1}$.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\sin \sqrt{10^x + 1} \right)$$

Differentiate:
$$y = \sin \sqrt{10^{x} + 1}$$
.
 $\frac{dy}{dx} = \frac{d}{dx} \left(\sin \sqrt{10^{x} + 1} \right)$
Chain Rule: $= \begin{pmatrix} \\ \end{pmatrix} \frac{d}{dx} \left(\sqrt{10^{x} + 1} \right)$

Differentiate: $y = \sin \sqrt{10^x + 1}$. $\frac{dy}{dx} = \frac{d}{dx} \left(\sin \sqrt{10^x + 1} \right)$ Chain Rule: $= \left(\cos \sqrt{10^x + 1} \right) \frac{d}{dx} \left(\sqrt{10^x + 1} \right)$

Differentiate: $y = \sin \sqrt{10^{x} + 1}$. $\frac{dy}{dx} = \frac{d}{dx} \left(\sin \sqrt{10^{x} + 1} \right)$ Chain Rule: $= \left(\cos \sqrt{10^{x} + 1} \right) \frac{d}{dx} \left(\sqrt{10^{x} + 1} \right)$

Differentiate:
$$y = \sin \sqrt{10^x + 1}$$
.
 $\frac{dy}{dx} = \frac{d}{dx} \left(\sin \sqrt{10^x + 1} \right)$
Chain Rule: $= \left(\cos \sqrt{10^x + 1} \right) \frac{d}{dx} \left(\sqrt{10^x + 1} \right)$
Chain Rule: $= \left(\cos \sqrt{10^x + 1} \right) \left(\right) \frac{d}{dx} (10^x + 1)$

Differentiate:
$$y = \sin \sqrt{10^x + 1}$$
.

$$\frac{dy}{dx} = \frac{d}{dx} \left(\sin \sqrt{10^x + 1} \right)$$
Chain Rule: $= \left(\cos \sqrt{10^x + 1} \right) \frac{d}{dx} \left(\sqrt{10^x + 1} \right)$
Chain Rule: $= \left(\cos \sqrt{10^x + 1} \right) \left(\frac{1}{2\sqrt{10^x + 1}} \right) \frac{d}{dx} (10^x + 1)$

Differentiate:
$$y = \sin\sqrt{10^x + 1}$$
.

$$\frac{dy}{dx} = \frac{d}{dx} \left(\sin\sqrt{10^x + 1} \right)$$
Chain Rule: $= \left(\cos\sqrt{10^x + 1} \right) \frac{d}{dx} \left(\sqrt{10^x + 1} \right)$
Chain Rule: $= \left(\cos\sqrt{10^x + 1} \right) \left(\frac{1}{2\sqrt{10^x + 1}} \right) \frac{d}{dx} (10^x + 1)$
 $= \left(\cos\sqrt{10^x + 1} \right) \left(\frac{1}{2\sqrt{10^x + 1}} \right) ($

Differentiate:
$$y = \sin\sqrt{10^x + 1}$$
.

$$\frac{dy}{dx} = \frac{d}{dx} \left(\sin\sqrt{10^x + 1} \right)$$
Chain Rule: $= \left(\cos\sqrt{10^x + 1} \right) \frac{d}{dx} \left(\sqrt{10^x + 1} \right)$
Chain Rule: $= \left(\cos\sqrt{10^x + 1} \right) \left(\frac{1}{2\sqrt{10^x + 1}} \right) \frac{d}{dx} (10^x + 1)$
 $= \left(\cos\sqrt{10^x + 1} \right) \left(\frac{1}{2\sqrt{10^x + 1}} \right) (10^x \ln 10)$

Differentiate:
$$y = \sin\sqrt{10^{x} + 1}$$
.
 $\frac{dy}{dx} = \frac{d}{dx} \left(\sin\sqrt{10^{x} + 1} \right)$
Chain Rule: $= \left(\cos\sqrt{10^{x} + 1} \right) \frac{d}{dx} \left(\sqrt{10^{x} + 1} \right)$
Chain Rule: $= \left(\cos\sqrt{10^{x} + 1} \right) \left(\frac{1}{2\sqrt{10^{x} + 1}} \right) \frac{d}{dx} (10^{x} + 1)$
 $= \left(\cos\sqrt{10^{x} + 1} \right) \left(\frac{1}{2\sqrt{10^{x} + 1}} \right) (10^{x} \ln 10)$
 $= \frac{(\ln 10)10^{x} \cos\sqrt{10^{x} + 1}}{2\sqrt{10^{x} + 1}}.$

Differentiate: $y = e^{\tan \pi x}$.

Differentiate: $y = e^{\tan \pi x}$. $\frac{dy}{dx} = \frac{d}{dx} (e^{\tan \pi x})$

Differentiate: $y = e^{\tan \pi x}$. $\frac{dy}{dx} = \frac{d}{dx} \left(e^{\tan \pi x} \right)$

Differentiate:
$$y = e^{\tan \pi x}$$
.
 $\frac{dy}{dx} = \frac{d}{dx} (e^{\tan \pi x})$
Chain Rule: $= () \frac{d}{dx} (\tan \pi x)$

Differentiate:
$$y = e^{\tan \pi x}$$
.
 $\frac{dy}{dx} = \frac{d}{dx} (e^{\tan \pi x})$
Chain Rule: $= (e^{\tan \pi x}) \frac{d}{dx} (\tan \pi x)$

Differentiate:
$$y = e^{\tan \pi x}$$
.
 $\frac{dy}{dx} = \frac{d}{dx} (e^{\tan \pi x})$
Chain Rule: $= (e^{\tan \pi x}) \frac{d}{dx} (\tan \pi x)$

Differentiate:
$$y = e^{\tan \pi x}$$
.
 $\frac{dy}{dx} = \frac{d}{dx} (e^{\tan \pi x})$
Chain Rule: $= (e^{\tan \pi x}) \frac{d}{dx} (\tan \pi x)$
Chain Rule: $= (e^{\tan \pi x}) () \frac{d}{dx} (\pi x)$

Differentiate:
$$y = e^{\tan \pi x}$$
.
 $\frac{dy}{dx} = \frac{d}{dx} (e^{\tan \pi x})$
Chain Rule: $= (e^{\tan \pi x}) \frac{d}{dx} (\tan \pi x)$
Chain Rule: $= (e^{\tan \pi x}) (\sec^2 \pi x) \frac{d}{dx} (\pi x)$

Differentiate:
$$y = e^{\tan \pi x}$$
.
 $\frac{dy}{dx} = \frac{d}{dx} (e^{\tan \pi x})$
Chain Rule: $= (e^{\tan \pi x}) \frac{d}{dx} (\tan \pi x)$
Chain Rule: $= (e^{\tan \pi x}) (\sec^2 \pi x) \frac{d}{dx} (\pi x)$
 $= (e^{\tan \pi x}) (\sec^2 \pi x) ()$

Differentiate:
$$y = e^{\tan \pi x}$$
.
 $\frac{dy}{dx} = \frac{d}{dx} (e^{\tan \pi x})$
Chain Rule: $= (e^{\tan \pi x}) \frac{d}{dx} (\tan \pi x)$
Chain Rule: $= (e^{\tan \pi x}) (\sec^2 \pi x) \frac{d}{dx} (\pi x)$
 $= (e^{\tan \pi x}) (\sec^2 \pi x) (\pi)$

Differentiate:
$$y = e^{\tan \pi x}$$
.
 $\frac{dy}{dx} = \frac{d}{dx} (e^{\tan \pi x})$
Chain Rule: $= (e^{\tan \pi x}) \frac{d}{dx} (\tan \pi x)$
Chain Rule: $= (e^{\tan \pi x}) (\sec^2 \pi x) \frac{d}{dx} (\pi x)$
 $= (e^{\tan \pi x}) (\sec^2 \pi x) (\pi)$
 $= \pi e^{\tan \pi x} \sec^2 \pi x.$