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(2.4) Derivatives of Trigonometric Functions

Derivatives of Trigonometric Functions

d
dx

(sin x) = cos x
d

dx
(csc x) = − csc x cot x

d
dx

(cos x) = − sin x
d

dx
(sec x) = sec x tan x

d
dx

(tan x) = sec2 x
d

dx
(cot x) = − csc2 x
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(2.4) Derivatives of Trigonometric Functions

Example (Quotient Rule, )

Differentiate y =
sec x

1 + tan x
.

Quotient Rule:
dy
dx

=
(1 + tan x) d

dx (sec x)− (sec x) d
dx (1 + tan x)

(1 + tan x)2

=
(1 + tan x) (

sec x tan x

) − (sec x)
(

sec2 x

)
(1 + tan x)2

=
sec x(tan x + tan2 x − sec2 x)

(1 + tan x)2

=
sec x(tan x

− 1

)

(1 + tan x)2 .
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(2.4) Derivatives of Trigonometric Functions

Example (Using the Product Rule twice)

Differentiate:
y = θeθ(tan θ + sec θ).

Product Rule:

y ′ = θeθ
d
dθ

(tan θ + sec θ) +
d
dθ

(θeθ)(tan θ + sec θ)

Product Rule:

= θeθ(

sec2 θ + tan θ sec θ

) + (

θ
d
dθ

(eθ) +
d
dθ

(θ)eθ

)(tan θ + sec θ)

= θeθ(sec2 θ + tan θ sec θ) + (θ(

eθ

) + (

1

)eθ)(tan θ + sec θ)

= θeθ sec θ(sec θ + tan θ) + eθ(θ + 1)(tan θ + sec θ)

= (θ sec θ + θ + 1)eθ(tan θ + sec θ).
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(2.4) Derivatives of Trigonometric Functions

Example
Find the 27th derivative of f (x) = cos x .

f ′(x) =

− sin x

f ′′(x) =

− cos x

f ′′′(x) =

sin x

f (4)(x) =

cos x

f (5)(x) =

− sin x

The derivatives repeat in a cycle of length 4.
f (24)(x) =

cos x

.
Differentiate three more times: f (27)(x) =

sin x

.
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(2.5) The Chain Rule

The Chain Rule

What is the derivative of F (x) =
√

x2 + 1?

The formulas we have learned don’t tell us how to solve this.
F is a composite function f ◦ g:
y = f (u) =

√
u

.
u = g(x) =

x2 + 1

.
Then y = F (x) = f (g(x)) =

f (x2 + 1) =
√

x2 + 1.

We know the derivatives of f and g:
f ′(u) =

1
2u−1/2

.
g′(x) =

2x

.
It would be nice if we could find the derivative of F in terms of the
derivatives of y and u.
It turns out that the derivative of the composition f ◦ g is the
product of the derivative of f and the derivative of g.
This important fact is called the Chain Rule.
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(2.5) The Chain Rule

The Chain Rule
If g is differentiable at x and f is differentiable at g(x), then the
composite function F = f ◦ g defined by F (x) = f (g(x)) is differentiable
at x and F ′ is given by the product

F ′(x) = f ′(g(x)) · g′(x)

In Leibniz notation, if y = f (u) and u = g(x) are both differentiable
functions, then

dy
dx

=
dy
du

du
dx

We will not prove this in class, but a proof can be found in the textbook.
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(2.5) The Chain Rule

Example (Chain Rule, )

Differentiate f (x) =
√

x2 + 1.

Let h(x) =

x2 + 1.

Let g(x) =

√
x .

Then f (x) = g(h(x)).
Chain Rule: f ′(x) = g′(h(x))h′(x)

=

(

1
2
√

h(x)

)
(

2x

)

=
x√

x2 + 1
.
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(2.5) The Chain Rule

Example (Chain Rule)

Differentiate y = cos x3.

Let u =

x3.

Then y = cos u.

Chain Rule:
dy
dx

=
dy
du

du
dx

= (

− sin u

)
(

3x2

)
= −3x2 sin x3.
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(2.5) The Chain Rule

In the example y = sin2 x , the outer function was a power
function: y = u2.

The derivative was dy
dx = 2u du

dx = 2 sin x cos x .
We can generalize this:

The Power Rule Combined with the Chain Rule
If n is any real number and u = g(x) is differentiable, then

d
dx

(un) = nun−1 du
dx

Alternatively,
d

dx
[g(x)]n = n[g(x)]n−1 · g′(x)
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(2.5) The Chain Rule

d
dx

(un) = nun−1 du
dx

Example (Chain Rule, )

Differentiate y = (x3 − 1)100.

Let u =

x3 − 1.

Then y = u100.

Chain Rule:
dy
dx

=
dy
du

du
dx

=
(

100u99

) (

3x2
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= 300x2(x3 − 1)99.
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(2.5) The Chain Rule

d
dx

[g(x)]n = n[g(x)]n−1 · g′(x)

Example (Chain Rule, )

Differentiate f (x) =
1

3
√

x2 + x + 1
.

Let h(x) =

x2 + x + 1.

Let g(x) =

x−1/3.

Then f (x) = g(h(x)).
Chain Rule: f ′(x) = g′(h(x))h′(x)

=

(

− 1
3
(h(x))−4/3

)
(

2x + 1

)

= −2x + 1
3

(x2 + x + 1)−4/3.
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(2.5) The Chain Rule

Example
Find the derivative of

g(t) =
(

t − 2
2t + 1

)9

.

Power Rule and Chain Rule:

g′(t) = 9
(

t − 2
2t + 1

)8 d
dt

(
t − 2

2t + 1

)
Quotient Rule:

= 9
(

t − 2
2t + 1

)8 (2t + 1) d
dt (t − 2)− (t − 2) d

dt (2t + 1)
(2t + 1)2

= 9
(

t − 2
2t + 1

)8 (2t + 1) ·

1

− (t − 2) ·

2

(2t + 1)2

= 9
(

t − 2
2t + 1

)8 2t + 1− 2t + 4
(2t + 1)2 =

45(t − 2)8

(2t + 1)10
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(2.5) The Chain Rule

Example

Find the derivative of y = (2x + 1)5(x3 − x + 1)4.

Product Rule:

y ′ = (2x + 1)5 d
dx

(x3 − x + 1)4 + (x3 − x + 1)4 d
dx

(2x + 1)5

Chain Rule:

= (2x + 1)5

4(x3 − x + 1)3 d
dx

(x3 − x + 1)

+ (x3 − x + 1)4

5(2x + 1)4 d
dx

(2x + 1)

= 4(2x + 1)5(x3 − x + 1)3(

3x2 − 1

) + 5(x3 − x + 1)4(2x + 1)4

2

Common factor 2(2x + 1)4(x3 − x + 1)3:

= 2(2x + 1)4(x3 − x + 1)3(17x3 + 6x2 − 9x + 3)
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(2.5) The Chain Rule

Example (Chain Rule, general exponential function)

Differentiate y = 2x .

y = (e

ln 2

)x

y = ex ln 2.

Let u =

x ln 2.

Then y = eu.

Chain Rule:
dy
dx

=
dy
du

du
dx

= (

eu

)(

ln 2

)

= (e(

x ln 2

))(ln 2)

= (eln 2)x(ln 2)
= 2x ln 2.
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(2.5) The Chain Rule

Theorem (The Derivative of ax )
d

dx
(ax) = ax ln a.
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(2.5) The Chain Rule

We can add more “links” when we use the Chain Rule.

y = f (u)
u = g(x)
x = h(t)
Use the Chain Rule twice:

dy
dt

=
dy
du

du
dt

=
dy
du

du
dx

dx
dt

FreeCalc Math 140 Lecture 13 March 26, 2013



(2.5) The Chain Rule

We can add more “links” when we use the Chain Rule.
y = f (u)
u = g(x)
x = h(t)

Use the Chain Rule twice:
dy
dt

=
dy
du

du
dt

=
dy
du

du
dx

dx
dt

FreeCalc Math 140 Lecture 13 March 26, 2013



(2.5) The Chain Rule

We can add more “links” when we use the Chain Rule.
y = f (u)
u = g(x)
x = h(t)
Use the Chain Rule twice:

dy
dt

=
dy
du

du
dt

=
dy
du

du
dx

dx
dt

FreeCalc Math 140 Lecture 13 March 26, 2013



(2.5) The Chain Rule

We can add more “links” when we use the Chain Rule.
y = f (u)
u = g(x)
x = h(t)
Use the Chain Rule twice:

dy
dt

=
dy
du

du
dt

=
dy
du

du
dx

dx
dt

FreeCalc Math 140 Lecture 13 March 26, 2013



(2.5) The Chain Rule

Example (Using the Chain Rule twice)

Differentiate: y = sin
√

10x + 1.

dy
dx

=
d

dx

(
sin
√

10x + 1
)

Chain Rule: =
(

cos
√

10x + 1

) d
dx

(√
10x + 1

)
Chain Rule: =

(
cos
√

10x + 1
) (

1
2
√

10x + 1

)
d

dx
(10x + 1)

=
(

cos
√

10x + 1
)( 1

2
√

10x + 1

)
(

10x ln 10

)

=
(ln 10)10x cos

√
10x + 1

2
√

10x + 1
.
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(2.5) The Chain Rule

Example (Using the Chain Rule twice)

Differentiate: y = etanπx .

dy
dx

=
d

dx
(
etanπx)

Chain Rule: =
(

etanπx

) d
dx

(tanπx)

Chain Rule: =
(
etanπx) (

sec2 πx

) d
dx

(πx)

=
(
etanπx) (sec2 πx

)
(

π

)

= πetanπx sec2 πx .
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