Math 140 Lecture 14

Greg Maloney

with modifications by T. Milev

University of Massachusetts Boston

March 28, 2013

Outline

(2.6) Implicit Differentiation

Outline

(2.6) Implicit Differentiation

- (6.4) Derivatives of Logarithmic Functions
 - Logarithmic Differentiation

 So far, we have seen functions with formulas that express one varable explicitly in terms of the other.

- So far, we have seen functions with formulas that express one varable explicitly in terms of the other.
- $y = \sqrt{x^3 + 1}$, $y = x \sin x$, etc.

- So far, we have seen functions with formulas that express one varable explicitly in terms of the other.
- $y = \sqrt{x^3 + 1}$, $y = x \sin x$, etc.
- Some functions are given implicitly by a relation between *x* and *y*.

- So far, we have seen functions with formulas that express one varable explicitly in terms of the other.
- $y = \sqrt{x^3 + 1}$, $y = x \sin x$, etc.
- Some functions are given implicitly by a relation between *x* and *y*.
- $x^2 + y^2 = 25$ isn't the equation of any one function.

- So far, we have seen functions with formulas that express one varable explicitly in terms of the other.
- $y = \sqrt{x^3 + 1}$, $y = x \sin x$, etc.
- Some functions are given implicitly by a relation between *x* and *y*.
- $x^2 + y^2 = 25$ isn't the equation of any one function.
- Implicitly it gives two functions $y = \sqrt{25 x^2}$ and $y = -\sqrt{25 x^2}$.

- So far, we have seen functions with formulas that express one varable explicitly in terms of the other.
- $y = \sqrt{x^3 + 1}$, $y = x \sin x$, etc.
- Some functions are given implicitly by a relation between x and y.
- $x^2 + y^2 = 25$ isn't the equation of any one function.
- Implicitly it gives two functions $y = \sqrt{25 x^2}$ and $y = -\sqrt{25 x^2}$.
- How do we differentiate this?

- So far, we have seen functions with formulas that express one varable explicitly in terms of the other.
- $y = \sqrt{x^3 + 1}$, $y = x \sin x$, etc.
- Some functions are given implicitly by a relation between *x* and *y*.
- $x^2 + y^2 = 25$ isn't the equation of any one function.
- Implicitly it gives two functions $y = \sqrt{25 x^2}$ and $y = -\sqrt{25 x^2}$.
- How do we differentiate this?
- Differentiate both sides with respect to x, and then solve for y'.

Find
$$\frac{dy}{dx}$$
, given $(x-1)^2 + (y+2)^2 = 25$:

Find
$$\frac{dy}{dx}$$
, given $(x-1)^2 + (y+2)^2 = 25$:
 $\frac{d}{dx} ((x-1)^2) + \frac{d}{dx} ((y+2)^2) = \frac{d}{dx} (25)$
+

Find
$$\frac{dy}{dx}$$
, given $(x-1)^2 + (y+2)^2 = 25$:

$$\frac{d}{dx} \left((x-1)^2 \right) + \frac{d}{dx} \left((y+2)^2 \right) = \frac{d}{dx} (25)$$

$$2(x-1) \frac{d}{dx} (x-1) + =$$

Find
$$\frac{dy}{dx}$$
, given $(x-1)^2 + (y+2)^2 = 25$:

$$\frac{d}{dx} \left((x-1)^2 \right) + \frac{d}{dx} \left((y+2)^2 \right) = \frac{d}{dx} (25)$$

$$2(x-1) \frac{d}{dx} (x-1) + =$$

Find
$$\frac{dy}{dx}$$
, given $(x-1)^2 + (y+2)^2 = 25$:

$$\frac{d}{dx} \left((x-1)^2 \right) + \frac{d}{dx} \left((y+2)^2 \right) = \frac{d}{dx} (25)$$

$$2(x-1) \frac{d}{dx} (x-1) + 2(y+2) \frac{d}{dx} (y+2) =$$

Find
$$\frac{dy}{dx}$$
, given $(x-1)^2 + (y+2)^2 = 25$:

$$\frac{d}{dx} \left((x-1)^2 \right) + \frac{d}{dx} \left((y+2)^2 \right) = \frac{d}{dx} (25)$$

$$2(x-1) \frac{d}{dx} (x-1) + 2(y+2) \frac{d}{dx} (y+2) =$$

Find
$$\frac{dy}{dx}$$
, given $(x-1)^2 + (y+2)^2 = 25$:

$$\frac{d}{dx} ((x-1)^2) + \frac{d}{dx} ((y+2)^2) = \frac{d}{dx} (25)$$

$$2(x-1) \frac{d}{dx} (x-1) + 2(y+2) \frac{d}{dx} (y+2) = 0$$

Find
$$\frac{dy}{dx}$$
, given $(x-1)^2 + (y+2)^2 = 25$:

$$\frac{d}{dx} \left((x-1)^2 \right) + \frac{d}{dx} \left((y+2)^2 \right) = \frac{d}{dx} (25)$$

$$2(x-1)\frac{d}{dx}(x-1) + 2(y+2)\frac{d}{dx}(y+2) = 0$$

$$2(x-1)(\) + 2(y+2)\left(\ \ \right) = 0$$

Find
$$\frac{dy}{dx}$$
, given $(x-1)^2 + (y+2)^2 = 25$:

$$\frac{d}{dx} \left((x-1)^2 \right) + \frac{d}{dx} \left((y+2)^2 \right) = \frac{d}{dx} (25)$$

$$2(x-1)\frac{d}{dx}(x-1) + 2(y+2)\frac{d}{dx}(y+2) = 0$$

$$2(x-1)\frac{d}{dx}(x-1) + 2(y+2)\left(\frac{d}{dx}(x-1) + \frac{d}{dx}(x-1) + \frac{d}{dx}(x-1) \right) = 0$$

Find
$$\frac{dy}{dx}$$
, given $(x-1)^2 + (y+2)^2 = 25$:

$$\frac{d}{dx} \left((x-1)^2 \right) + \frac{d}{dx} \left((y+2)^2 \right) = \frac{d}{dx} (25)$$

$$2(x-1)\frac{d}{dx}(x-1) + 2(y+2)\frac{d}{dx}(y+2) = 0$$

$$2(x-1)(1) + 2(y+2) \left(\right) = 0$$

Find
$$\frac{dy}{dx}$$
, given $(x-1)^2 + (y+2)^2 = 25$:

$$\frac{d}{dx} \left((x-1)^2 \right) + \frac{d}{dx} \left((y+2)^2 \right) = \frac{d}{dx} (25)$$

$$2(x-1)\frac{d}{dx}(x-1) + 2(y+2)\frac{d}{dx}(y+2) = 0$$

$$2(x-1)(1) + 2(y+2)\left(\frac{dy}{dx}\right) = 0$$

Find
$$\frac{dy}{dx}$$
, given $(x-1)^2 + (y+2)^2 = 25$:

$$\frac{d}{dx} \left((x-1)^2 \right) + \frac{d}{dx} \left((y+2)^2 \right) = \frac{d}{dx} (25)$$

$$2(x-1)\frac{d}{dx}(x-1) + 2(y+2)\frac{d}{dx}(y+2) = 0$$

$$2(x-1)(1) + 2(y+2) \left(\frac{dy}{dx} \right) = 0$$

$$2(y+2) \left(\frac{dy}{dx} \right) = 2(1-x)$$

Find
$$\frac{dy}{dx}$$
, given $(x-1)^2 + (y+2)^2 = 25$:
$$\frac{d}{dx} \left((x-1)^2 \right) + \frac{d}{dx} \left((y+2)^2 \right) = \frac{d}{dx} (25)$$

$$2(x-1)\frac{d}{dx}(x-1) + 2(y+2)\frac{d}{dx}(y+2) = 0$$

$$2(x-1)(1) + 2(y+2) \left(\frac{dy}{dx} \right) = 0$$

$$2(y+2) \left(\frac{dy}{dx} \right) = 2(1-x)$$

$$\frac{dy}{dx} = \frac{1-x}{y+2}$$

Plug in
$$(-2,2)$$
:
$$\frac{dy}{dx} = \frac{1+2}{2+2} = \frac{3}{4}$$

Find
$$\frac{dy}{dx}$$
, given $(x-1)^2 + (y+2)^2 = 25$:
$$\frac{d}{dx} \left((x-1)^2 \right) + \frac{d}{dx} \left((y+2)^2 \right) = \frac{d}{dx} (25)$$

$$2(x-1)\frac{d}{dx}(x-1) + 2(y+2)\frac{d}{dx}(y+2) = 0$$

$$2(x-1)(1) + 2(y+2)\left(\frac{dy}{dx}\right) = 0$$

$$2(y+2)\left(\frac{dy}{dx}\right) = 2(1-x)$$

$$\frac{dy}{dx} = \frac{1-x}{y+2}$$

Find an equation of the tangent line to $(x-1)^2 + (y+2)^2 = 25$ at (-2,2).

Plug in
$$(-2,2)$$
:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1+2}{2+2} = \frac{3}{4}$$

Point-slope form:

$$y-2=\frac{3}{4}(x+2)$$

Find
$$\frac{dy}{dx}$$
, given $(x-1)^2 + (y+2)^2 = 25$:
$$\frac{d}{dx} \left((x-1)^2 \right) + \frac{d}{dx} \left((y+2)^2 \right) = \frac{d}{dx} (25)$$

$$2(x-1)\frac{d}{dx}(x-1) + 2(y+2)\frac{d}{dx}(y+2) = 0$$

$$2(x-1)(1) + 2(y+2)\left(\frac{dy}{dx}\right) = 0$$

$$2(y+2)\left(\frac{dy}{dx}\right) = 2(1-x)$$

$$\frac{dy}{dx} = \frac{1-x}{y+2}$$

Find
$$y'$$
 if $\sin(x+y) = y^2 \cos x$.

Find
$$y'$$
 if $\sin(x + y) = y^2 \cos x$.

$$\frac{d}{dx}(\sin(x + y)) = \frac{d}{dx}(y^2 \cos x)$$

Find
$$y'$$
 if $\sin(x + y) = y^2 \cos x$.

$$\frac{d}{dx}(\sin(x + y)) = \frac{d}{dx}(y^2 \cos x)$$
=

Find
$$y'$$
 if $\sin(x + y) = y^2 \cos x$.

$$\frac{d}{dx}(\sin(x + y)) = \frac{d}{dx}(y^2 \cos x)$$

$$(\cos(x + y))\frac{d}{dx}(x + y) =$$

Find
$$y'$$
 if $\sin(x + y) = y^2 \cos x$.

$$\frac{d}{dx}(\sin(x + y)) = \frac{d}{dx}(y^2 \cos x)$$

$$(\cos(x + y))\frac{d}{dx}(x + y) =$$

Find
$$y'$$
 if $\sin(x+y) = y^2 \cos x$.

$$\frac{d}{dx}(\sin(x+y)) = \frac{d}{dx}(y^2 \cos x)$$

$$(\cos(x+y))\frac{d}{dx}(x+y) = (y^2)\frac{d}{dx}(\cos x) + (\cos x)\frac{d}{dx}(y^2)$$

Find
$$y'$$
 if $\sin(x+y) = y^2 \cos x$.

$$\frac{d}{dx}(\sin(x+y)) = \frac{d}{dx}(y^2 \cos x)$$

$$(\cos(x+y))\frac{d}{dx}(x+y) = (y^2)\frac{d}{dx}(\cos x) + (\cos x)\frac{d}{dx}(y^2)$$

$$(\cos(x+y))(y) = (y^2)(y) + (\cos x)(y)$$

Find y' if
$$\sin(x + y) = y^2 \cos x$$
.

$$\frac{d}{dx}(\sin(x + y)) = \frac{d}{dx}(y^2 \cos x)$$

$$(\cos(x + y))\frac{d}{dx}(x + y) = (y^2)\frac{d}{dx}(\cos x) + (\cos x)\frac{d}{dx}(y^2)$$

$$(\cos(x + y))(1 + y') = (y^2)(y^2)(y^2)$$

Find y' if
$$\sin(x + y) = y^2 \cos x$$
.

$$\frac{d}{dx}(\sin(x + y)) = \frac{d}{dx}(y^2 \cos x)$$

$$(\cos(x + y))\frac{d}{dx}(x + y) = (y^2)\frac{d}{dx}(\cos x) + (\cos x)\frac{d}{dx}(y^2)$$

$$(\cos(x + y))(1 + y') = (y^2)(y^2)(y^2)$$

Find y' if
$$\sin(x + y) = y^2 \cos x$$
.

$$\frac{d}{dx}(\sin(x + y)) = \frac{d}{dx}(y^2 \cos x)$$

$$(\cos(x + y))\frac{d}{dx}(x + y) = (y^2)\frac{d}{dx}(\cos x) + (\cos x)\frac{d}{dx}(y^2)$$

$$(\cos(x + y))(1 + y') = (y^2)(-\sin x) + (\cos x)($$

Find y' if
$$\sin(x + y) = y^2 \cos x$$
.

$$\frac{d}{dx}(\sin(x + y)) = \frac{d}{dx}(y^2 \cos x)$$

$$(\cos(x + y))\frac{d}{dx}(x + y) = (y^2)\frac{d}{dx}(\cos x) + (\cos x)\frac{d}{dx}(y^2)$$

$$(\cos(x + y))(1 + y') = (y^2)(-\sin x) + (\cos x)(-\sin x)$$

Find y' if
$$\sin(x + y) = y^2 \cos x$$
.

$$\frac{d}{dx}(\sin(x + y)) = \frac{d}{dx}(y^2 \cos x)$$

$$(\cos(x + y))\frac{d}{dx}(x + y) = (y^2)\frac{d}{dx}(\cos x) + (\cos x)\frac{d}{dx}(y^2)$$

$$(\cos(x + y))(1 + y') = (y^2)(-\sin x) + (\cos x)(2yy')$$

Find y' if
$$\sin(x + y) = y^2 \cos x$$
.

$$\frac{d}{dx}(\sin(x + y)) = \frac{d}{dx}(y^2 \cos x)$$

$$(\cos(x + y))\frac{d}{dx}(x + y) = (y^2)\frac{d}{dx}(\cos x) + (\cos x)\frac{d}{dx}(y^2)$$

$$(\cos(x + y))(1 + y') = (y^2)(-\sin x) + (\cos x)(2yy')$$

$$\cos(x + y) + y' \cos(x + y) = -y^2 \sin x + 2yy' \cos x$$

Find y' if
$$\sin(x + y) = y^2 \cos x$$
.

$$\frac{d}{dx}(\sin(x + y)) = \frac{d}{dx}(y^2 \cos x)$$

$$(\cos(x + y))\frac{d}{dx}(x + y) = (y^2)\frac{d}{dx}(\cos x) + (\cos x)\frac{d}{dx}(y^2)$$

$$(\cos(x + y))(1 + y') = (y^2)(-\sin x) + (\cos x)(2yy')$$

$$\cos(x + y) + y' \cos(x + y) = -y^2 \sin x + 2yy' \cos x$$

$$y' \cos(x + y) - 2yy' \cos x = -y^2 \sin x - \cos(x + y)$$

Find y' if
$$\sin(x + y) = y^2 \cos x$$
.

$$\frac{d}{dx}(\sin(x + y)) = \frac{d}{dx}(y^2 \cos x)$$

$$(\cos(x + y))\frac{d}{dx}(x + y) = (y^2)\frac{d}{dx}(\cos x) + (\cos x)\frac{d}{dx}(y^2)$$

$$(\cos(x + y))(1 + y') = (y^2)(-\sin x) + (\cos x)(2yy')$$

$$\cos(x + y) + y' \cos(x + y) = -y^2 \sin x + 2yy' \cos x$$

$$y' \cos(x + y) - 2yy' \cos x = -y^2 \sin x - \cos(x + y)$$
Factor: $y'(\cos(x + y) - 2y \cos x) = -y^2 \sin x - \cos(x + y)$

Find
$$y'$$
 if $\sin(x + y) = y^2 \cos x$.

$$\frac{d}{dx}(\sin(x + y)) = \frac{d}{dx}(y^2 \cos x)$$

$$(\cos(x + y))\frac{d}{dx}(x + y) = (y^2)\frac{d}{dx}(\cos x) + (\cos x)\frac{d}{dx}(y^2)$$

$$(\cos(x + y))(1 + y') = (y^2)(-\sin x) + (\cos x)(2yy')$$

$$\cos(x + y) + y'\cos(x + y) = -y^2 \sin x + 2yy'\cos x$$

$$y'\cos(x + y) - 2yy'\cos x = -y^2 \sin x - \cos(x + y)$$
Factor: $y'(\cos(x + y) - 2y\cos x) = -y^2 \sin x - \cos(x + y)$

$$y' = \frac{-y^2 \sin x - \cos(x + y)}{\cos(x + y) - 2y\cos x}.$$

Find
$$y''$$
 if $x^4 + y^4 = 16$.

Find
$$y''$$
 if $x^4 + y^4 = 16$.
 $4x^3 + 4y^3y' = 0$

Find
$$y''$$
 if $x^4 + y^4 = 16$.
 $4x^3 + 4y^3y' = 0$
 $y' = -\frac{x^3}{y^3}$

Find
$$y''$$
 if $x^4 + y^4 = 16$.

$$4x^3 + 4y^3y' = 0$$

$$y' = -\frac{x^3}{y^3}.$$

$$y'' = \frac{d}{dx} \left(-\frac{x^3}{y^3} \right)$$

Find
$$y''$$
 if $x^4 + y^4 = 16$.
 $4x^3 + 4y^3y' = 0$
 $y' = -\frac{x^3}{y^3}$.
 $y'' = \frac{d}{dx} \left(-\frac{x^3}{y^3} \right) = -\frac{y^3 \frac{d}{dx}(x^3) - x^3 \frac{d}{dx}(y^3)}{(y^3)^2}$

Find
$$y''$$
 if $x^4 + y^4 = 16$.

$$4x^3 + 4y^3y' = 0$$

$$y' = -\frac{x^3}{y^3}.$$

$$y'' = \frac{d}{dx} \left(-\frac{x^3}{y^3} \right) = -\frac{y^3 \frac{d}{dx} (x^3) - x^3 \frac{d}{dx} (y^3)}{(y^3)^2}$$

$$= -\frac{y^3(y) - x^3(y)}{y^6}$$

Find
$$y''$$
 if $x^4 + y^4 = 16$.

$$4x^3 + 4y^3y' = 0$$

$$y' = -\frac{x^3}{y^3}.$$

$$y'' = \frac{d}{dx} \left(-\frac{x^3}{y^3} \right) = -\frac{y^3 \frac{d}{dx} (x^3) - x^3 \frac{d}{dx} (y^3)}{(y^3)^2}$$

$$= -\frac{y^3 (3x^2) - x^3 (y^3)}{y^6}$$

Find
$$y''$$
 if $x^4 + y^4 = 16$.

$$4x^3 + 4y^3y' = 0$$

$$y' = -\frac{x^3}{y^3}.$$

$$y'' = \frac{d}{dx} \left(-\frac{x^3}{y^3} \right) = -\frac{y^3 \frac{d}{dx} (x^3) - x^3 \frac{d}{dx} (y^3)}{(y^3)^2}$$

$$= -\frac{y^3 (3x^2) - x^3 (y^3)}{y^6}$$

Find
$$y''$$
 if $x^4 + y^4 = 16$.

$$4x^3 + 4y^3y' = 0$$

$$y' = -\frac{x^3}{y^3}.$$

$$y'' = \frac{d}{dx} \left(-\frac{x^3}{y^3} \right) = -\frac{y^3 \frac{d}{dx}(x^3) - x^3 \frac{d}{dx}(y^3)}{(y^3)^2}$$

$$= -\frac{y^3(3x^2) - x^3(3y^2y')}{y^6}$$

Find
$$y''$$
 if $x^4 + y^4 = 16$.

$$4x^3 + 4y^3y' = 0$$

$$y' = -\frac{x^3}{y^3}.$$

$$y'' = \frac{d}{dx} \left(-\frac{x^3}{y^3} \right) = -\frac{y^3 \frac{d}{dx}(x^3) - x^3 \frac{d}{dx}(y^3)}{(y^3)^2}$$

$$= -\frac{y^3(3x^2) - x^3(3y^2y')}{y^6} = -\frac{3x^2y^3 - 3x^3y^2\left(-\frac{x^3}{y^3} \right)}{y^6}$$

Find
$$y''$$
 if $x^4 + y^4 = 16$.

$$4x^3 + 4y^3y' = 0$$

$$y' = -\frac{x^3}{y^3}.$$

$$y'' = \frac{d}{dx} \left(-\frac{x^3}{y^3} \right) = -\frac{y^3 \frac{d}{dx}(x^3) - x^3 \frac{d}{dx}(y^3)}{(y^3)^2}$$

$$= -\frac{y^3(3x^2) - x^3(3y^2y')}{y^6} = -\frac{3x^2y^3 - 3x^3y^2\left(-\frac{x^3}{y^3} \right)}{y^6}$$

$$= -\frac{3x^2(y^3 + \frac{x^4}{y})}{y^6}$$

Find
$$y''$$
 if $x^4 + y^4 = 16$.

$$4x^3 + 4y^3y' = 0$$

$$y' = -\frac{x^3}{y^3}.$$

$$y'' = \frac{d}{dx} \left(-\frac{x^3}{y^3} \right) = -\frac{y^3 \frac{d}{dx} (x^3) - x^3 \frac{d}{dx} (y^3)}{(y^3)^2}$$

$$= -\frac{y^3 (3x^2) - x^3 (3y^2 y')}{y^6} = -\frac{3x^2 y^3 - 3x^3 y^2 \left(-\frac{x^3}{y^3} \right)}{y^6}$$

$$= -\frac{3x^2 (y^3 + \frac{x^4}{y})}{y^6} = -\frac{3x^2 \left(\frac{y^4 + x^4}{y} \right)}{y^6}$$

Find
$$y''$$
 if $x^4 + y^4 = 16$.

$$4x^3 + 4y^3y' = 0$$

$$y' = -\frac{x^3}{y^3}.$$

$$y'' = \frac{d}{dx} \left(-\frac{x^3}{y^3} \right) = -\frac{y^3 \frac{d}{dx} (x^3) - x^3 \frac{d}{dx} (y^3)}{(y^3)^2}$$

$$= -\frac{y^3 (3x^2) - x^3 (3y^2 y')}{y^6} = -\frac{3x^2 y^3 - 3x^3 y^2 \left(-\frac{x^3}{y^3} \right)}{y^6}$$

$$= -\frac{3x^2 (y^3 + \frac{x^4}{y})}{y^6} = -\frac{3x^2 \left(\frac{y^4 + x^4}{y} \right)}{y^6}$$

$$= -\frac{3x^2 (y^4 + x^4)}{y^7}$$

Find
$$y''$$
 if $x^4 + y^4 = 16$.

$$4x^3 + 4y^3y' = 0$$

$$y' = -\frac{x^3}{y^3}.$$

$$y'' = \frac{d}{dx} \left(-\frac{x^3}{y^3} \right) = -\frac{y^3 \frac{d}{dx} (x^3) - x^3 \frac{d}{dx} (y^3)}{(y^3)^2}$$

$$= -\frac{y^3 (3x^2) - x^3 (3y^2 y')}{y^6} = -\frac{3x^2 y^3 - 3x^3 y^2 \left(-\frac{x^3}{y^3} \right)}{y^6}$$

$$= -\frac{3x^2 (y^3 + \frac{x^4}{y})}{y^6} = -\frac{3x^2 \left(\frac{y^4 + x^4}{y} \right)}{y^6}$$

$$= -\frac{3x^2 (y^4 + x^4)}{y^7} = -\frac{3x^2 (16)}{y^7}$$

Find
$$y''$$
 if $x^4 + y^4 = 16$.

$$4x^3 + 4y^3y' = 0$$

$$y' = -\frac{x^3}{y^3}.$$

$$y'' = \frac{d}{dx} \left(-\frac{x^3}{y^3} \right) = -\frac{y^3 \frac{d}{dx}(x^3) - x^3 \frac{d}{dx}(y^3)}{(y^3)^2}$$

$$= -\frac{y^3(3x^2) - x^3(3y^2y')}{y^6} = -\frac{3x^2y^3 - 3x^3y^2\left(-\frac{x^3}{y^3}\right)}{y^6}$$

$$= -\frac{3x^2(y^3 + \frac{x^4}{y})}{y^6} = -\frac{3x^2\left(\frac{y^4 + x^4}{y}\right)}{y^6}$$

$$= -\frac{3x^2(y^4 + x^4)}{y^7} = -\frac{3x^2(16)}{y^7} = -48\frac{x^2}{y^7}.$$

Theorem (The Derivative of $\log_a x$)

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}.$$

Proof.

Theorem (The Derivative of $log_a x$)

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}.$$

Proof.

Let
$$y = \log_a x$$
.

Theorem (The Derivative of $log_a x$)

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}.$$

Proof.

Let
$$y = \log_a x$$
.

Then
$$a^y = x$$
.

Theorem (The Derivative of $\log_a x$)

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}.$$

Proof.

Let
$$y = \log_a x$$
.

Then
$$\mathbf{a}^{\mathbf{y}} = \mathbf{x}$$
.

Theorem (The Derivative of $\log_a x$)

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}.$$

Proof.

Let
$$y = \log_a x$$
.

Then
$$\mathbf{a}^{\mathbf{y}} = \mathbf{x}$$
.

Differentiate implicitly:
$$a^y(\ln a)y' =$$

Theorem (The Derivative of $\log_a x$)

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}.$$

Proof.

Let
$$y = \log_a x$$
.

Then
$$a^y = x$$
.

Differentiate implicitly:
$$a^y(\ln a)y' =$$

Theorem (The Derivative of $\log_a x$)

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}.$$

Proof.

Let
$$y = \log_a x$$
.

Then
$$a^y = x$$
.

Differentiate implicitly: $a^y(\ln a)y'=1$

Theorem (The Derivative of $log_a x$)

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}.$$

Proof.

Let
$$y = \log_a x$$
.

Then
$$a^y = x$$
.

Differentiate implicitly: $a^y(\ln a)y'=1$

$$y' = \frac{1}{a^y \ln a}$$

Theorem (The Derivative of $log_a x$)

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}.$$

Proof.

Let
$$y = \log_a x$$
.

Then
$$a^y = x$$
.

Differentiate implicitly: $a^y(\ln a)y'=1$

$$y' = \frac{1}{a^y \ln a}$$
$$= \frac{1}{x \ln a}.$$

Differentiate
$$f(x) = \log_3(5^x + 1)$$
.

Differentiate
$$f(x) = \log_3(5^x + 1)$$
.
Let $h(x) =$
Let $g(x) =$
Then $f(x) = g(h(x))$.

Differentiate
$$f(x) = \log_3(5^x + 1)$$
.
Let $h(x) = 5^x + 1$.
Let $g(x) =$
Then $f(x) = g(h(x))$.

Differentiate
$$f(x) = \log_3(5^x + 1)$$
.
Let $h(x) = 5^x + 1$.
Let $g(x) =$
Then $f(x) = g(h(x))$.

Differentiate
$$f(x) = \log_3(5^x + 1)$$
.
Let $h(x) = 5^x + 1$.
Let $g(x) = \log_3 x$.
Then $f(x) = g(h(x))$.

Differentiate
$$f(x) = \log_3(5^x + 1)$$
.
Let $h(x) = 5^x + 1$.
Let $g(x) = \log_3 x$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$

Differentiate
$$f(x) = \log_3(5^x + 1)$$
.
Let $h(x) = 5^x + 1$.
Let $g(x) = \log_3 x$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= \begin{pmatrix} & & \\ & & \end{pmatrix}$ ()

Differentiate
$$f(x) = \log_3(5^x + 1)$$
.
Let $h(x) = 5^x + 1$.
Let $g(x) = \log_3 x$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= \left(\frac{1}{h(x) \ln 3}\right)$ ()

Differentiate
$$f(x) = \log_3(5^x + 1)$$
.
Let $h(x) = 5^x + 1$.
Let $g(x) = \log_3 x$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= \left(\frac{1}{h(x) \ln 3}\right)$ (

Differentiate
$$f(x) = \log_3(5^x + 1)$$
.
Let $h(x) = 5^x + 1$.
Let $g(x) = \log_3 x$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= \left(\frac{1}{h(x) \ln 3}\right) (5^x \ln 5)$

Differentiate
$$f(x) = \log_3(5^x + 1)$$
.
Let $h(x) = 5^x + 1$.
Let $g(x) = \log_3 x$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$

$$= \left(\frac{1}{h(x)\ln 3}\right)(5^x \ln 5)$$

$$= \frac{5^x \ln 5}{(5^x + 1)\ln 3}$$
.

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}.$$

$$\frac{\mathsf{d}}{\mathsf{d}x}(\ln x) = \frac{1}{x \ln e}$$

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}.$$

$$\frac{d}{dx}(\ln x) = \frac{1}{x \ln e}$$
$$= \frac{1}{x(\)}$$

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}.$$

$$\frac{d}{dx}(\ln x) = \frac{1}{x \ln e}$$
$$= \frac{1}{x(1)}$$

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}.$$

$$\frac{d}{dx}(\ln x) = \frac{1}{x \ln e}$$

$$= \frac{1}{x(1)}$$

$$= \frac{1}{x}.$$

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}.$$

 $\ln x = \log_e x$, so plug in a = e to find the derivative of $\ln x$.

$$\frac{d}{dx}(\ln x) = \frac{1}{x \ln e}$$
$$= \frac{1}{x(1)}$$
$$= \frac{1}{x}.$$

Theorem (The Derivative of ln x)

$$\frac{d}{dx}(\ln x) = \frac{1}{x}.$$

FreeCalc Math 140 Lecture 14 March 28, 2013

Differentiate $y = \ln(e^x \sec x)$.

Differentiate
$$y = \ln(e^x \sec x)$$
.
 $y = \ln e^x + \ln \sec x$

Differentiate
$$y = \ln(e^x \sec x)$$
.
 $y = \ln e^x + \ln \sec x$
 $= + \ln \sec x$.

Differentiate
$$y = \ln(e^x \sec x)$$
.
 $y = \ln e^x + \ln \sec x$
 $= x + \ln \sec x$.

Differentiate
$$y = \ln(e^x \sec x)$$
.
 $y = \ln e^x + \ln \sec x$
 $= x + \ln \sec x$.
 $\frac{dy}{dx} = +$

Differentiate
$$y = \ln(e^x \sec x)$$
.
 $y = \ln e^x + \ln \sec x$
 $= x + \ln \sec x$.
 $\frac{dy}{dx} = 1 +$

Differentiate
$$y = \ln(e^x \sec x)$$
.
 $y = \ln e^x + \ln \sec x$
 $= x + \ln \sec x$.
 $\frac{dy}{dx} = 1 + \frac{d}{dx}(\ln \sec x)$

Differentiate
$$y = \ln(e^x \sec x)$$
.
 $y = \ln e^x + \ln \sec x$
 $= x + \ln \sec x$.
 $\frac{dy}{dx} = 1 + \frac{d}{dx}(\ln \sec x)$
Let $u =$

Differentiate
$$y = \ln(e^x \sec x)$$
.
 $y = \ln e^x + \ln \sec x$
 $= x + \ln \sec x$.
 $\frac{dy}{dx} = 1 + \frac{d}{dx}(\ln \sec x)$
Let $u = \sec x$.

Differentiate
$$y = \ln(e^x \sec x)$$
.
 $y = \ln e^x + \ln \sec x$
 $= x + \ln \sec x$.
 $\frac{dy}{dx} = 1 + \frac{d}{dx}(\ln \sec x)$
Let $u = \sec x$.
Then $\ln \sec x = \ln u$.

Differentiate
$$y = \ln(e^x \sec x)$$
.
 $y = \ln e^x + \ln \sec x$
 $= x + \ln \sec x$.
 $\frac{dy}{dx} = 1 + \frac{d}{dx}(\ln \sec x)$
Let $u = \sec x$.
Then $\ln \sec x = \ln u$.
Chain Rule: $\frac{dy}{dx} = 1 + \frac{d}{du}(\ln u)\frac{du}{dx}$

Differentiate
$$y = \ln(e^x \sec x)$$
.
 $y = \ln e^x + \ln \sec x$
 $= x + \ln \sec x$.
 $\frac{dy}{dx} = 1 + \frac{d}{dx}(\ln \sec x)$
Let $u = \sec x$.
Then $\ln \sec x = \ln u$.
Chain Rule: $\frac{dy}{dx} = 1 + \frac{d}{du}(\ln u)\frac{du}{dx}$
 $= 1 + \left(\begin{array}{c} 1 \\ 1 \end{array}\right)$

Differentiate
$$y = \ln(e^x \sec x)$$
.
 $y = \ln e^x + \ln \sec x$
 $= x + \ln \sec x$.
 $\frac{dy}{dx} = 1 + \frac{d}{dx}(\ln \sec x)$
Let $u = \sec x$.
Then $\ln \sec x = \ln u$.
Chain Rule: $\frac{dy}{dx} = 1 + \frac{d}{du}(\ln u)\frac{du}{dx}$
 $= 1 + \left(\frac{1}{u}\right)$ (

Differentiate
$$y = \ln(e^x \sec x)$$
.
 $y = \ln e^x + \ln \sec x$
 $= x + \ln \sec x$.
 $\frac{dy}{dx} = 1 + \frac{d}{dx}(\ln \sec x)$
Let $u = \sec x$.
Then $\ln \sec x = \ln u$.
Chain Rule: $\frac{dy}{dx} = 1 + \frac{d}{du}(\ln u)\frac{du}{dx}$
 $= 1 + \left(\frac{1}{u}\right)$ (

Differentiate
$$y = \ln(e^x \sec x)$$
.
 $y = \ln e^x + \ln \sec x$
 $= x + \ln \sec x$.
 $\frac{dy}{dx} = 1 + \frac{d}{dx}(\ln \sec x)$
Let $u = \sec x$.
Then $\ln \sec x = \ln u$.
Chain Rule: $\frac{dy}{dx} = 1 + \frac{d}{du}(\ln u)\frac{du}{dx}$
 $= 1 + \left(\frac{1}{u}\right)(\sec x \tan x)$

Differentiate
$$y = \ln(e^x \sec x)$$
.
 $y = \ln e^x + \ln \sec x$
 $= x + \ln \sec x$.
 $\frac{dy}{dx} = 1 + \frac{d}{dx}(\ln \sec x)$
Let $u = \sec x$.
Then $\ln \sec x = \ln u$.
Chain Rule: $\frac{dy}{dx} = 1 + \frac{d}{du}(\ln u)\frac{du}{dx}$
 $= 1 + \left(\frac{1}{u}\right)(\sec x \tan x)$
 $= 1 + \frac{1}{\sec x}\sec x \tan x$

Differentiate
$$y = \ln(e^x \sec x)$$
.
 $y = \ln e^x + \ln \sec x$
 $= x + \ln \sec x$.
 $\frac{dy}{dx} = 1 + \frac{d}{dx}(\ln \sec x)$
Let $u = \sec x$.
Then $\ln \sec x = \ln u$.
Chain Rule: $\frac{dy}{dx} = 1 + \frac{d}{du}(\ln u)\frac{du}{dx}$
 $= 1 + \left(\frac{1}{u}\right)(\sec x \tan x)$
 $= 1 + \tan x$.

Find
$$f'(x)$$
 if $f(x) = \ln |x|$.

Find
$$f'(x)$$
 if $f(x) = \ln |x|$.

$$f(x) = \begin{cases} \ln x & \text{if } x > 0 \\ \ln(-x) & \text{if } x < 0 \end{cases}.$$

FreeCalc Math 140 Lecture 14 March 28, 2013

Find
$$f'(x)$$
 if $f(x) = \ln |x|$.
$$f(x) = \begin{cases} \ln x & \text{if } x > 0 \\ \ln(-x) & \text{if } x < 0 \end{cases}$$

$$f'(x) = \begin{cases} & \text{if } x > 0 \\ & \text{if } x < 0 \end{cases}$$

Find
$$f'(x)$$
 if $f(x) = \ln |x|$.
$$f(x) = \begin{cases} \ln x & \text{if } x > 0 \\ \ln(-x) & \text{if } x < 0 \end{cases}$$

$$f'(x) = \begin{cases} \frac{1}{x} & \text{if } x > 0 \\ & \text{if } x < 0 \end{cases}$$

Find
$$f'(x)$$
 if $f(x) = \ln |x|$.

$$f(x) = \begin{cases} \ln x & \text{if } x > 0\\ \ln(-x) & \text{if } x < 0 \end{cases}$$

$$f'(x) = \begin{cases} \frac{1}{x} & \text{if } x > 0\\ & \text{if } x < 0 \end{cases}$$

Find
$$f'(x)$$
 if $f(x) = \ln |x|$.

$$f(x) = \begin{cases} \ln x & \text{if } x > 0\\ \ln(-x) & \text{if } x < 0 \end{cases}$$

$$f'(x) = \begin{cases} \frac{1}{x} & \text{if } x > 0\\ \frac{1}{-x}(-1) & \text{if } x < 0 \end{cases}$$

FreeCalc Math 140 Lecture 14 March 28, 2013

Find
$$f'(x)$$
 if $f(x) = \ln |x|$.

$$f(x) = \begin{cases} \ln x & \text{if } x > 0\\ \ln(-x) & \text{if } x < 0 \end{cases}$$

$$f'(x) = \begin{cases} \frac{1}{x} & \text{if } x > 0\\ \frac{1}{-x}(-1) & \text{if } x < 0 \end{cases}$$

$$= \begin{cases} \frac{1}{x} & \text{if } x > 0\\ \frac{1}{x} & \text{if } x < 0 \end{cases}$$

Find
$$f'(x)$$
 if $f(x) = \ln |x|$.
$$f(x) = \begin{cases} \ln x & \text{if } x > 0 \\ \ln(-x) & \text{if } x < 0 \end{cases}$$

$$f'(x) = \begin{cases} \frac{1}{x} & \text{if } x > 0 \\ \frac{1}{-x}(-1) & \text{if } x < 0 \end{cases}$$

$$= \begin{cases} \frac{1}{x} & \text{if } x > 0 \\ \frac{1}{x} & \text{if } x < 0 \end{cases}$$

$$= \frac{1}{x} \text{ if } x \neq 0.$$

Example (Logarithmic Differentiation)

Differentiate
$$y = \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$
.

FreeCalc Math 140 Lecture 14 March 28, 2013

Differentiate
$$y = \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$
.

Take the natural logarithm of both sides:

$$\ln y = \ln \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$

Differentiate
$$y = \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$
.

Take the natural logarithm of both sides:

$$\ln y = \ln \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$

$$\ln y = (5/3) \ln(x-1) + 3 \ln(\sin x) - (1/2) \ln(e^x + 1).$$

Differentiate
$$y = \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$
.

Take the natural logarithm of both sides:

$$\ln y = \ln \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$

$$\ln y = (5/3) \ln(x-1) + 3 \ln(\sin x) - (1/2) \ln(e^x + 1).$$

$$\frac{d}{dx} (\ln y) = \frac{d}{dx} [(5/3) \ln(x-1) + 3 \ln(\sin x) - (1/2) \ln(e^x + 1)]$$

$$= \begin{bmatrix} & & \\ & \end{bmatrix} + \begin{bmatrix} & & \\ & \end{bmatrix} - \begin{bmatrix} & & \\ & & \end{bmatrix}$$

Differentiate
$$y = \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$
.

Take the natural logarithm of both sides:

$$\ln y = \ln \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$

$$\ln y = (5/3) \ln(x-1) + 3 \ln(\sin x) - (1/2) \ln(e^x + 1).$$

$$\frac{d}{dx} (\ln y) = \frac{d}{dx} [(5/3) \ln(x-1) + 3 \ln(\sin x) - (1/2) \ln(e^x + 1)]$$

$$\left[\frac{1}{y} \left(\frac{dy}{dx}\right)\right] = \left[\begin{array}{c} \\ \end{array}\right] + \left[\begin{array}{c} \\ \end{array}\right] - \left[\begin{array}{c} \\ \end{array}\right]$$

Differentiate
$$y = \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$
.

Take the natural logarithm of both sides:

$$\ln y = \ln \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$

$$\ln y = (5/3) \ln(x-1) + 3 \ln(\sin x) - (1/2) \ln(e^x + 1).$$

$$\frac{d}{dx} (\ln y) = \frac{d}{dx} \left[(5/3) \ln(x-1) + 3 \ln(\sin x) - (1/2) \ln(e^x + 1) \right]$$

$$\left[\frac{1}{y} \left(\frac{dy}{dx} \right) \right] = \left[\qquad \qquad \right] + \left[\qquad \qquad \right] - \left[\qquad \qquad \right]$$

Differentiate
$$y = \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$
.

Take the natural logarithm of both sides:

$$\ln y = \ln \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$

$$\ln y = (5/3) \ln(x-1) + 3 \ln(\sin x) - (1/2) \ln(e^x + 1).$$

$$\frac{d}{dx} (\ln y) = \frac{d}{dx} \left[(5/3) \ln(x-1) + 3 \ln(\sin x) - (1/2) \ln(e^x + 1) \right]$$

$$\left[\frac{1}{y} \left(\frac{dy}{dx} \right) \right] = \left[\frac{5}{3} \left(\frac{1}{x-1} \right) \right] + \left[\frac{1}{y} \left(\frac{dy}{dx} \right) \right]$$

Differentiate
$$y = \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$
.

Take the natural logarithm of both sides:

$$\ln y = \ln \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$

$$\ln y = (5/3) \ln(x-1) + 3 \ln(\sin x) - (1/2) \ln(e^x + 1).$$

$$\frac{d}{dx} (\ln y) = \frac{d}{dx} \left[(5/3) \ln(x-1) + 3 \ln(\sin x) - (1/2) \ln(e^x + 1) \right]$$

$$\left[\frac{1}{y} \left(\frac{dy}{dx} \right) \right] = \left[\frac{5}{3} \left(\frac{1}{x-1} \right) \right] + \left[\frac{1}{y} \left(\frac{dy}{dx} \right) \right]$$

Differentiate
$$y = \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$
.

Take the natural logarithm of both sides:

$$\ln y = \ln \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$

$$\ln y = (5/3) \ln(x-1) + 3 \ln(\sin x) - (1/2) \ln(e^x + 1).$$

$$\frac{d}{dx} (\ln y) = \frac{d}{dx} \left[(5/3) \ln(x-1) + 3 \ln(\sin x) - (1/2) \ln(e^x + 1) \right]$$

$$\left[\frac{1}{y} \left(\frac{dy}{dx} \right) \right] = \left[\frac{5}{3} \left(\frac{1}{x-1} \right) \right] + \left[\frac{3 \cos x}{\sin x} \right] - \left[\frac{1}{y} \left(\frac{dy}{dx} \right) \right]$$

Differentiate
$$y = \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$
.

Take the natural logarithm of both sides:

$$\ln y = \ln \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$

$$\ln y = (5/3) \ln(x-1) + 3 \ln(\sin x) - (1/2) \ln(e^x + 1).$$

$$\frac{d}{dx} (\ln y) = \frac{d}{dx} \left[(5/3) \ln(x-1) + 3 \ln(\sin x) - (1/2) \ln(e^x + 1) \right]$$

$$\left[\frac{1}{y} \left(\frac{dy}{dx} \right) \right] = \left[\frac{5}{3} \left(\frac{1}{x-1} \right) \right] + \left[\frac{3 \cos x}{\sin x} \right] - \left[\frac{1}{y} \left(\frac{dy}{dx} \right) \right]$$

Differentiate
$$y = \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$
.

Take the natural logarithm of both sides:

$$\ln y = \ln \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$

$$\ln y = (5/3) \ln(x-1) + 3 \ln(\sin x) - (1/2) \ln(e^x + 1).$$

$$\frac{d}{dx} (\ln y) = \frac{d}{dx} \left[(5/3) \ln(x-1) + 3 \ln(\sin x) - (1/2) \ln(e^x + 1) \right]$$

$$\left[\frac{1}{y} \left(\frac{dy}{dx} \right) \right] = \left[\frac{5}{3} \left(\frac{1}{x-1} \right) \right] + \left[\frac{3 \cos x}{\sin x} \right] - \left[\frac{1}{2} \left(\frac{e^x}{e^x + 1} \right) \right]$$

Differentiate
$$y = \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$
.

Take the natural logarithm of both sides:

$$\ln y = \ln \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$

$$\ln y = (5/3) \ln(x-1) + 3 \ln(\sin x) - (1/2) \ln(e^x + 1).$$

$$\frac{d}{dx} (\ln y) = \frac{d}{dx} \left[(5/3) \ln(x-1) + 3 \ln(\sin x) - (1/2) \ln(e^x + 1) \right]$$

$$\left[\frac{1}{y} \left(\frac{dy}{dx} \right) \right] = \left[\frac{5}{3} \left(\frac{1}{x-1} \right) \right] + \left[\frac{3 \cos x}{\sin x} \right] - \left[\frac{1}{2} \left(\frac{e^x}{e^x + 1} \right) \right]$$

$$\frac{dy}{dx} = \left(\frac{5}{3(x-1)} + 3 \cot x - \frac{e^x}{2(e^x + 1)} \right) y$$

Differentiate
$$y = \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$
.

Take the natural logarithm of both sides:

$$\ln y = \ln \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}$$

$$\ln y = (5/3) \ln(x-1) + 3 \ln(\sin x) - (1/2) \ln(e^x + 1).$$

$$\frac{d}{dx} (\ln y) = \frac{d}{dx} \left[(5/3) \ln(x-1) + 3 \ln(\sin x) - (1/2) \ln(e^x + 1) \right]$$

$$\left[\frac{1}{y} \left(\frac{dy}{dx} \right) \right] = \left[\frac{5}{3} \left(\frac{1}{x-1} \right) \right] + \left[\frac{3 \cos x}{\sin x} \right] - \left[\frac{1}{2} \left(\frac{e^x}{e^x + 1} \right) \right]$$

$$\frac{dy}{dx} = \left(\frac{5}{3(x-1)} + 3 \cot x - \frac{e^x}{2(e^x + 1)} \right) y$$

$$= \left(\frac{5}{3(x-1)} + 3 \cot x - \frac{e^x}{2(e^x + 1)} \right) \frac{(x-1)^{5/3} \sin^3 x}{\sqrt{e^x + 1}}.$$