Review problems for April 9 Exam Math 140

Instructor. Todor Milev

The exam will be closed book, no calculators allowed. Try to solve all theoretical problems without using the lectures/textbook. If you get stuck, read the lectures/textbook, but close the textbook/lectures when going back to the problem. Finally, compare what you wrote with the lectures/textbook.

Problem 1 Find the equation of the tangent line to the function

1.
$$y = x^3 + 2x^2 + 3x + 1$$
 at the point $(-1, -1)$.
 $\cdot_1 + x_7 = h$:..omsum

 2. $y = x^3 + 2x^2 - 3x + 1$ at the point $(1, 1)$.
 $\cdot_7 + x_7 = h$:..omsum

Problem 2 Compute the limit.

1.
$$\lim_{x \to 0} \frac{x^2}{\sin^2(2x)}$$
. $\frac{1}{2}$ interval $\frac{1}{2}$ interval $\frac{1}{2}$

2.
$$\lim_{x \to 0} \frac{x^2}{\cos 4x - 1}.$$

3.
$$\lim_{x \to 0} \frac{x^2}{\cos 6x - 1}$$

Problem 3 Compute the derivative of the function.

•
$$f(x) = \frac{1+x}{1+\frac{2}{x}}.$$

$$\cdot \frac{z(x+z)}{z+z^{x}+x_{F}} : uonsup$$

•
$$f(x) = \frac{1+x}{1+\frac{3}{x}}$$
.
.*iomsup*

Problem 4 Compute the derivative of the function.

1.
$$2^{3^x}$$
.
2. 3^{2^x} .
(E up)($(z u)_x g_{x^2} z_{x^2}$.

answer: $3^{2^x} 2^x (\ln 2) (\ln 3)$.

Problem 5 Compute the derivative of the function.

1. $\sec^2(3x^2)$.

answer:
$$12^{\frac{x\sin(3x^2)}{(\cos(3x^2))^3}}$$
.

2.
$$\csc^2(3x^2)$$
.

answer: $-12 \frac{\cos(3x^2)}{\sin(3x^2)^3}$.

Problem 6 Use implicit differentiation to express $\frac{dy}{dx}$ via y and x, where x and y satisfy the following relation.

1. $x^4(x+y) = y^2(3x-y)$.

2.
$$2x^3 + x^2y - xy^3 = 2$$
.

Problem 7 Use implicit differentiation to find an equation of the tangent line to the curve at the given point.

- $x^{2/3} + y^{2/3} = 4$ at $(-3\sqrt{3}, 1)$.
- $y^2(y^2-4) = x^2(x^2-5)$ at (0,-2).

Problem 8 Prove that $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$. Compute $\lim_{x\to\infty} \left(1+\frac{2}{x}\right)^x$.

Problem 9

- 1. Define concave up and concave down function. Define what is the connection between concave up/down function and the notion of derivative.
- 2. Define differentiable function at a point. Define derivative at a point.
- 3. Give example of non-differentiable function. Motivate your answer.

Problem 10

- 1. For integer n, prove the power rule $\frac{d}{dx}(x^n) = nx^{n-1}$ using the definition of derivative.
- 2. Let $f(x) = a^x$. Prove that $\frac{d}{dx}(a^x) = a^x f'(0)$ using the definition of derivative $(f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h})$.
- 3. Prove the product rule $\frac{d}{dx}(fg) = \frac{df}{dx}g + f\frac{dg}{dx}$ using the definition of derivative.

Problem 11 Prove that $(\sin x)' = \cos x$.