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(3.1) Maximum and Minimum Values Fermat’s Theorem

Fermat’s Theorem

The next theorem gives a condition that can help to find local maxima
and minima.
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(3.1) Maximum and Minimum Values Fermat’s Theorem

Theorem (Fermat’s Theorem)
Let f be a function defined in an open interval around c and such that
f ′(c) exists. If f has a local maximum or minimum at c, then f ′(c) = 0.

Proof.

We will prove the case when f has a local maximum at c.
This means that f (x) ≤ f (c) for all x close to c.
If h is very small (negative or positive), then

f (c + h)− f (c) ≤ 0.

Suppose h is positive, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0+

f (c + h)− f (c)
h

≤ lim
h→0+

0 = 0

Suppose h is negative, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0−

f (c + h)− f (c)
h

≥ lim
h→0−

0 = 0

Therefore f ′(c) ≤ 0

and f ′(c) ≥ 0, so f ′(c) = 0.

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Theorem (Fermat’s Theorem)
Let f be a function defined in an open interval around c and such that
f ′(c) exists. If f has a local maximum or minimum at c, then f ′(c) = 0.

Proof.
We will prove the case when f has a local maximum at c.

This means that f (x) ≤ f (c) for all x close to c.
If h is very small (negative or positive), then

f (c + h)− f (c) ≤ 0.

Suppose h is positive, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0+

f (c + h)− f (c)
h

≤ lim
h→0+

0 = 0

Suppose h is negative, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0−

f (c + h)− f (c)
h

≥ lim
h→0−

0 = 0

Therefore f ′(c) ≤ 0

and f ′(c) ≥ 0, so f ′(c) = 0.

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Theorem (Fermat’s Theorem)
Let f be a function defined in an open interval around c and such that
f ′(c) exists. If f has a local maximum or minimum at c, then f ′(c) = 0.

Proof.
We will prove the case when f has a local maximum at c.
This means that f (x) ≤ f (c) for all x close to c.

If h is very small (negative or positive), then

f (c + h)− f (c) ≤ 0.

Suppose h is positive, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0+

f (c + h)− f (c)
h

≤ lim
h→0+

0 = 0

Suppose h is negative, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0−

f (c + h)− f (c)
h

≥ lim
h→0−

0 = 0

Therefore f ′(c) ≤ 0

and f ′(c) ≥ 0, so f ′(c) = 0.

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Theorem (Fermat’s Theorem)
Let f be a function defined in an open interval around c and such that
f ′(c) exists. If f has a local maximum or minimum at c, then f ′(c) = 0.

Proof.
We will prove the case when f has a local maximum at c.
This means that f (x) ≤ f (c) for all x close to c.
If h is very small (negative or positive), then f (c + h)− f (c) ≤ 0.

Suppose h is positive, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0+

f (c + h)− f (c)
h

≤ lim
h→0+

0 = 0

Suppose h is negative, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0−

f (c + h)− f (c)
h

≥ lim
h→0−

0 = 0

Therefore f ′(c) ≤ 0

and f ′(c) ≥ 0, so f ′(c) = 0.

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Theorem (Fermat’s Theorem)
Let f be a function defined in an open interval around c and such that
f ′(c) exists. If f has a local maximum or minimum at c, then f ′(c) = 0.

Proof.
We will prove the case when f has a local maximum at c.
This means that f (x) ≤ f (c) for all x close to c.
If h is very small (negative or positive), then f (c + h)− f (c) ≤ 0.
Suppose h is positive, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0+

f (c + h)− f (c)
h

≤ lim
h→0+

0 = 0

Suppose h is negative, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0−

f (c + h)− f (c)
h

≥ lim
h→0−

0 = 0

Therefore f ′(c) ≤ 0

and f ′(c) ≥ 0, so f ′(c) = 0.

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Theorem (Fermat’s Theorem)
Let f be a function defined in an open interval around c and such that
f ′(c) exists. If f has a local maximum or minimum at c, then f ′(c) = 0.

Proof.
We will prove the case when f has a local maximum at c.
This means that f (x) ≤ f (c) for all x close to c.
If h is very small (negative or positive), then f (c + h)− f (c) ≤ 0.
Suppose h is positive, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0+

f (c + h)− f (c)
h

≤

lim
h→0+

0

= 0

Suppose h is negative, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0−

f (c + h)− f (c)
h

≥ lim
h→0−

0 = 0

Therefore f ′(c) ≤ 0

and f ′(c) ≥ 0, so f ′(c) = 0.

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Theorem (Fermat’s Theorem)
Let f be a function defined in an open interval around c and such that
f ′(c) exists. If f has a local maximum or minimum at c, then f ′(c) = 0.

Proof.
We will prove the case when f has a local maximum at c.
This means that f (x) ≤ f (c) for all x close to c.
If h is very small (negative or positive), then f (c + h)− f (c) ≤ 0.
Suppose h is positive, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

=

lim
h→0+

f (c + h)− f (c)
h

≤ lim
h→0+

0

= 0

Suppose h is negative, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0−

f (c + h)− f (c)
h

≥ lim
h→0−

0 = 0

Therefore f ′(c) ≤ 0

and f ′(c) ≥ 0, so f ′(c) = 0.

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Theorem (Fermat’s Theorem)
Let f be a function defined in an open interval around c and such that
f ′(c) exists. If f has a local maximum or minimum at c, then f ′(c) = 0.

Proof.
We will prove the case when f has a local maximum at c.
This means that f (x) ≤ f (c) for all x close to c.
If h is very small (negative or positive), then f (c + h)− f (c) ≤ 0.
Suppose h is positive, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

=

lim
h→0+

f (c + h)− f (c)
h

≤ lim
h→0+

0

= 0

Suppose h is negative, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0−

f (c + h)− f (c)
h

≥ lim
h→0−

0 = 0

Therefore f ′(c) ≤ 0

and f ′(c) ≥ 0, so f ′(c) = 0.

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Theorem (Fermat’s Theorem)
Let f be a function defined in an open interval around c and such that
f ′(c) exists. If f has a local maximum or minimum at c, then f ′(c) = 0.

Proof.
We will prove the case when f has a local maximum at c.
This means that f (x) ≤ f (c) for all x close to c.
If h is very small (negative or positive), then f (c + h)− f (c) ≤ 0.
Suppose h is positive, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

=

lim
h→0+

f (c + h)− f (c)
h

≤ lim
h→0+

0 = 0

Suppose h is negative, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0−

f (c + h)− f (c)
h

≥ lim
h→0−

0 = 0

Therefore f ′(c) ≤ 0

and f ′(c) ≥ 0, so f ′(c) = 0.

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Theorem (Fermat’s Theorem)
Let f be a function defined in an open interval around c and such that
f ′(c) exists. If f has a local maximum or minimum at c, then f ′(c) = 0.

Proof.
We will prove the case when f has a local maximum at c.
This means that f (x) ≤ f (c) for all x close to c.
If h is very small (negative or positive), then f (c + h)− f (c) ≤ 0.
Suppose h is positive, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

=

lim
h→0+

f (c + h)− f (c)
h

≤ lim
h→0+

0 = 0

Suppose h is negative, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0−

f (c + h)− f (c)
h

≥ lim
h→0−

0 = 0

Therefore f ′(c) ≤ 0

and f ′(c) ≥ 0, so f ′(c) = 0.

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Theorem (Fermat’s Theorem)
Let f be a function defined in an open interval around c and such that
f ′(c) exists. If f has a local maximum or minimum at c, then f ′(c) = 0.

Proof.
We will prove the case when f has a local maximum at c.
This means that f (x) ≤ f (c) for all x close to c.
If h is very small (negative or positive), then f (c + h)− f (c) ≤ 0.
Suppose h is positive, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0+

f (c + h)− f (c)
h

≤ lim
h→0+

0 = 0

Suppose h is negative, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0−

f (c + h)− f (c)
h

≥ lim
h→0−

0 = 0

Therefore f ′(c) ≤ 0

and f ′(c) ≥ 0, so f ′(c) = 0.

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Theorem (Fermat’s Theorem)
Let f be a function defined in an open interval around c and such that
f ′(c) exists. If f has a local maximum or minimum at c, then f ′(c) = 0.

Proof.
We will prove the case when f has a local maximum at c.
This means that f (x) ≤ f (c) for all x close to c.
If h is very small (negative or positive), then f (c + h)− f (c) ≤ 0.
Suppose h is positive, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0+

f (c + h)− f (c)
h

≤ lim
h→0+

0 = 0

Suppose h is negative, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0−

f (c + h)− f (c)
h

≥

lim
h→0−

0

= 0

Therefore f ′(c) ≤ 0

and f ′(c) ≥ 0, so f ′(c) = 0.

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Theorem (Fermat’s Theorem)
Let f be a function defined in an open interval around c and such that
f ′(c) exists. If f has a local maximum or minimum at c, then f ′(c) = 0.

Proof.
We will prove the case when f has a local maximum at c.
This means that f (x) ≤ f (c) for all x close to c.
If h is very small (negative or positive), then f (c + h)− f (c) ≤ 0.
Suppose h is positive, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0+

f (c + h)− f (c)
h

≤ lim
h→0+

0 = 0

Suppose h is negative, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0−

f (c + h)− f (c)
h

≥

lim
h→0−

0

= 0

Therefore f ′(c) ≤ 0

and f ′(c) ≥ 0, so f ′(c) = 0.

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Theorem (Fermat’s Theorem)
Let f be a function defined in an open interval around c and such that
f ′(c) exists. If f has a local maximum or minimum at c, then f ′(c) = 0.

Proof.
We will prove the case when f has a local maximum at c.
This means that f (x) ≤ f (c) for all x close to c.
If h is very small (negative or positive), then f (c + h)− f (c) ≤ 0.
Suppose h is positive, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0+

f (c + h)− f (c)
h

≤ lim
h→0+

0 = 0

Suppose h is negative, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

=

lim
h→0−

f (c + h)− f (c)
h

≥ lim
h→0−

0

= 0

Therefore f ′(c) ≤ 0

and f ′(c) ≥ 0, so f ′(c) = 0.

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Theorem (Fermat’s Theorem)
Let f be a function defined in an open interval around c and such that
f ′(c) exists. If f has a local maximum or minimum at c, then f ′(c) = 0.

Proof.
We will prove the case when f has a local maximum at c.
This means that f (x) ≤ f (c) for all x close to c.
If h is very small (negative or positive), then f (c + h)− f (c) ≤ 0.
Suppose h is positive, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0+

f (c + h)− f (c)
h

≤ lim
h→0+

0 = 0

Suppose h is negative, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

=

lim
h→0−

f (c + h)− f (c)
h

≥ lim
h→0−

0

= 0

Therefore f ′(c) ≤ 0

and f ′(c) ≥ 0, so f ′(c) = 0.

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Theorem (Fermat’s Theorem)
Let f be a function defined in an open interval around c and such that
f ′(c) exists. If f has a local maximum or minimum at c, then f ′(c) = 0.

Proof.
We will prove the case when f has a local maximum at c.
This means that f (x) ≤ f (c) for all x close to c.
If h is very small (negative or positive), then f (c + h)− f (c) ≤ 0.
Suppose h is positive, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0+

f (c + h)− f (c)
h

≤ lim
h→0+

0 = 0

Suppose h is negative, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

=

lim
h→0−

f (c + h)− f (c)
h

≥ lim
h→0−

0 = 0

Therefore f ′(c) ≤ 0

and f ′(c) ≥ 0, so f ′(c) = 0.

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Theorem (Fermat’s Theorem)
Let f be a function defined in an open interval around c and such that
f ′(c) exists. If f has a local maximum or minimum at c, then f ′(c) = 0.

Proof.
We will prove the case when f has a local maximum at c.
This means that f (x) ≤ f (c) for all x close to c.
If h is very small (negative or positive), then f (c + h)− f (c) ≤ 0.
Suppose h is positive, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0+

f (c + h)− f (c)
h

≤ lim
h→0+

0 = 0

Suppose h is negative, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

=

lim
h→0−

f (c + h)− f (c)
h

≥ lim
h→0−

0 = 0

Therefore f ′(c) ≤ 0

and f ′(c) ≥ 0, so f ′(c) = 0.

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Theorem (Fermat’s Theorem)
Let f be a function defined in an open interval around c and such that
f ′(c) exists. If f has a local maximum or minimum at c, then f ′(c) = 0.

Proof.
We will prove the case when f has a local maximum at c.
This means that f (x) ≤ f (c) for all x close to c.
If h is very small (negative or positive), then f (c + h)− f (c) ≤ 0.
Suppose h is positive, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0+

f (c + h)− f (c)
h

≤ lim
h→0+

0 = 0

Suppose h is negative, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0−

f (c + h)− f (c)
h

≥ lim
h→0−

0 = 0

Therefore f ′(c) ≤ 0

and f ′(c) ≥ 0, so f ′(c) = 0.

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Theorem (Fermat’s Theorem)
Let f be a function defined in an open interval around c and such that
f ′(c) exists. If f has a local maximum or minimum at c, then f ′(c) = 0.

Proof.
We will prove the case when f has a local maximum at c.
This means that f (x) ≤ f (c) for all x close to c.
If h is very small (negative or positive), then f (c + h)− f (c) ≤ 0.
Suppose h is positive, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0+

f (c + h)− f (c)
h

≤ lim
h→0+

0 = 0

Suppose h is negative, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0−

f (c + h)− f (c)
h

≥ lim
h→0−

0 = 0

Therefore f ′(c) ≤ 0

and f ′(c) ≥ 0, so f ′(c) = 0.

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Theorem (Fermat’s Theorem)
Let f be a function defined in an open interval around c and such that
f ′(c) exists. If f has a local maximum or minimum at c, then f ′(c) = 0.

Proof.
We will prove the case when f has a local maximum at c.
This means that f (x) ≤ f (c) for all x close to c.
If h is very small (negative or positive), then f (c + h)− f (c) ≤ 0.
Suppose h is positive, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0+

f (c + h)− f (c)
h

≤ lim
h→0+

0 = 0

Suppose h is negative, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0−

f (c + h)− f (c)
h

≥ lim
h→0−

0 = 0

Therefore f ′(c) ≤ 0 and f ′(c) ≥ 0

, so f ′(c) = 0.

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Theorem (Fermat’s Theorem)
Let f be a function defined in an open interval around c and such that
f ′(c) exists. If f has a local maximum or minimum at c, then f ′(c) = 0.

Proof.
We will prove the case when f has a local maximum at c.
This means that f (x) ≤ f (c) for all x close to c.
If h is very small (negative or positive), then f (c + h)− f (c) ≤ 0.
Suppose h is positive, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0+

f (c + h)− f (c)
h

≤ lim
h→0+

0 = 0

Suppose h is negative, and divide both sides by h:

f ′(c) = lim
h→0

f (c + h)− f (c)
h

= lim
h→0−

f (c + h)− f (c)
h

≥ lim
h→0−

0 = 0

Therefore f ′(c) ≤ 0 and f ′(c) ≥ 0, so f ′(c) = 0.
FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem
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(3.1) Maximum and Minimum Values Fermat’s Theorem

Theorem (Fermat’s Theorem)
Let f be a function defined in an open interval around c and such that
f ′(c) exists. If f has a local maximum or minimum at c, then f ′(c) = 0.

What does Fermat’s Theorem not say?

Example

y = x3

Let f (x) = x3.
Then f ′(x) =

3x2.

f ′(x) = 0 when x =

0.

But f has no local maximum or
minimum at 0!

Fermat’s Theorem does not say “if f ′(c) = 0, then f has a local
maximum or a local minimum at c.”
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minimum at 0!

Fermat’s Theorem does not say “if f ′(c) = 0, then f has a local
maximum or a local minimum at c.”
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(3.1) Maximum and Minimum Values Fermat’s Theorem

Fermat’s Theorem and Example 6 suggest that we should look at three
types of points to find local maxima and minima:

1 Points c for which f ′(c) = 0.
2 Points c for which f ′(c) doesn’t exist.
3 Points c at end of intervals where f is defined. Here, we need also

that f be defined at c.

Definition (Critical Number)
A critical number of a function f is a number c in the domain of f such
that either f ′(c) = 0 or f ′(c) doesn’t exist.

Fermat’s Theorem says that if f has a local maximum or minimum at c,
and c is not an endpoint, then c is a critical number for f .
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(3.1) Maximum and Minimum Values Fermat’s Theorem

Example

Find the critical numbers of f (x) = x1/4(4− x2).

f (x) = x1/4(4− x2)

= 4x1/4 − x9/4

so f ′(x) = x−3/4 − 9
4

x5/4

=
1

x3/4 −
9
4

x5/4

=
4− 9x2

4x3/4

Set f ′(x) = 0

4− 9x2

4x3/4 = 0

4− 9x2 = 0
(2− 3x) (2 + 3x) = 0

x = ± 2
3

Critical numbers occur:

1 Where f ′(x) isn’t defined:

0.

2 Where f ′(x) = 0:

2
3 and − 2

3 .

f isn’t defined at −2
3 !

Therefore the critical numbers are 0 and 2
3 .

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Example

Find the critical numbers of f (x) = x1/4(4− x2).

f (x) = x1/4(4− x2)

= 4x1/4 − x9/4

so f ′(x) = x−3/4 − 9
4

x5/4

=
1

x3/4 −
9
4

x5/4

=
4− 9x2

4x3/4

Set f ′(x) = 0

4− 9x2

4x3/4 = 0

4− 9x2 = 0
(2− 3x) (2 + 3x) = 0

x = ± 2
3

Critical numbers occur:

1 Where f ′(x) isn’t defined:

0.

2 Where f ′(x) = 0:

2
3 and − 2

3 .

f isn’t defined at −2
3 !

Therefore the critical numbers are 0 and 2
3 .

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Example

Find the critical numbers of f (x) = x1/4(4− x2).

f (x) = x1/4(4− x2)

= 4x1/4 − x9/4

so f ′(x) = x−3/4 − 9
4

x5/4

=
1

x3/4 −
9
4

x5/4

=
4− 9x2

4x3/4

Set f ′(x) = 0

4− 9x2

4x3/4 = 0

4− 9x2 = 0
(2− 3x) (2 + 3x) = 0

x = ± 2
3

Critical numbers occur:

1 Where f ′(x) isn’t defined:

0.

2 Where f ′(x) = 0:

2
3 and − 2

3 .

f isn’t defined at −2
3 !

Therefore the critical numbers are 0 and 2
3 .

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Example

Find the critical numbers of f (x) = x1/4(4− x2).

f (x) = x1/4(4− x2)

= 4x1/4 − x9/4

so f ′(x) = x−3/4 − 9
4

x5/4

=
1

x3/4 −
9
4

x5/4

=
4− 9x2

4x3/4

Set f ′(x) = 0

4− 9x2

4x3/4 = 0

4− 9x2 = 0
(2− 3x) (2 + 3x) = 0

x = ± 2
3

Critical numbers occur:

1 Where f ′(x) isn’t defined:

0.

2 Where f ′(x) = 0:

2
3 and − 2

3 .

f isn’t defined at −2
3 !

Therefore the critical numbers are 0 and 2
3 .

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Example

Find the critical numbers of f (x) = x1/4(4− x2).

f (x) = x1/4(4− x2)

= 4x1/4 − x9/4

so f ′(x) = x−3/4 − 9
4

x5/4

=
1

x3/4 −
9
4

x5/4

=
4− 9x2

4x3/4

Set f ′(x) = 0

4− 9x2

4x3/4 = 0

4− 9x2 = 0
(2− 3x) (2 + 3x) = 0

x = ± 2
3

Critical numbers occur:

1 Where f ′(x) isn’t defined:

0.

2 Where f ′(x) = 0:

2
3 and − 2

3 .

f isn’t defined at −2
3 !

Therefore the critical numbers are 0 and 2
3 .

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Example

Find the critical numbers of f (x) = x1/4(4− x2).

f (x) = x1/4(4− x2)

= 4x1/4 − x9/4

so f ′(x) = x−3/4 − 9
4

x5/4

=
1

x3/4 −
9
4

x5/4

=
4− 9x2

4x3/4

Set f ′(x) = 0

4− 9x2

4x3/4 = 0

4− 9x2 = 0
(2− 3x) (2 + 3x) = 0

x = ± 2
3

Critical numbers occur:

1 Where f ′(x) isn’t defined:

0.

2 Where f ′(x) = 0:

2
3 and − 2

3 .

f isn’t defined at −2
3 !

Therefore the critical numbers are 0 and 2
3 .

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Example

Find the critical numbers of f (x) = x1/4(4− x2).

f (x) = x1/4(4− x2)

= 4x1/4 − x9/4

so f ′(x) = x−3/4 − 9
4

x5/4

=
1

x3/4 −
9
4

x5/4

=
4− 9x2

4x3/4

Set f ′(x) = 0

4− 9x2

4x3/4 = 0

4− 9x2 = 0
(2− 3x) (2 + 3x) = 0

x = ± 2
3

Critical numbers occur:

1 Where f ′(x) isn’t defined:

0.

2 Where f ′(x) = 0:

2
3 and − 2

3 .

f isn’t defined at −2
3 !

Therefore the critical numbers are 0 and 2
3 .

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Example

Find the critical numbers of f (x) = x1/4(4− x2).

f (x) = x1/4(4− x2)

= 4x1/4 − x9/4

so f ′(x) = x−3/4 − 9
4

x5/4

=
1

x3/4 −
9
4

x5/4

=
4− 9x2

4x3/4

Set f ′(x) = 0

4− 9x2

4x3/4 = 0

4− 9x2 = 0

(2− 3x) (2 + 3x) = 0

x = ± 2
3

Critical numbers occur:

1 Where f ′(x) isn’t defined:

0.

2 Where f ′(x) = 0:

2
3 and − 2

3 .

f isn’t defined at −2
3 !

Therefore the critical numbers are 0 and 2
3 .

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Example

Find the critical numbers of f (x) = x1/4(4− x2).

f (x) = x1/4(4− x2)

= 4x1/4 − x9/4

so f ′(x) = x−3/4 − 9
4

x5/4

=
1

x3/4 −
9
4

x5/4

=
4− 9x2

4x3/4

Set f ′(x) = 0

4− 9x2

4x3/4 = 0

4− 9x2 = 0
(2− 3x) (2 + 3x) = 0

x = ± 2
3

Critical numbers occur:

1 Where f ′(x) isn’t defined:

0.

2 Where f ′(x) = 0:

2
3 and − 2

3 .

f isn’t defined at −2
3 !

Therefore the critical numbers are 0 and 2
3 .

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Example

Find the critical numbers of f (x) = x1/4(4− x2).

f (x) = x1/4(4− x2)

= 4x1/4 − x9/4

so f ′(x) = x−3/4 − 9
4

x5/4

=
1

x3/4 −
9
4

x5/4

=
4− 9x2

4x3/4

Set f ′(x) = 0

4− 9x2

4x3/4 = 0

4− 9x2 = 0
(2− 3x) (2 + 3x) = 0

x = ± 2
3

Critical numbers occur:

1 Where f ′(x) isn’t defined:

0.

2 Where f ′(x) = 0:

2
3 and − 2

3 .

f isn’t defined at −2
3 !

Therefore the critical numbers are 0 and 2
3 .

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Example

Find the critical numbers of f (x) = x1/4(4− x2).

f (x) = x1/4(4− x2)

= 4x1/4 − x9/4

so f ′(x) = x−3/4 − 9
4

x5/4

=
1

x3/4 −
9
4

x5/4

=
4− 9x2

4x3/4

Set f ′(x) = 0

4− 9x2

4x3/4 = 0

4− 9x2 = 0
(2− 3x) (2 + 3x) = 0

x = ± 2
3

Critical numbers occur:
1 Where f ′(x) isn’t defined:

0.

2 Where f ′(x) = 0:

2
3 and − 2

3 .

f isn’t defined at −2
3 !

Therefore the critical numbers are 0 and 2
3 .

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Example

Find the critical numbers of f (x) = x1/4(4− x2).

f (x) = x1/4(4− x2)

= 4x1/4 − x9/4

so f ′(x) = x−3/4 − 9
4

x5/4

=
1

x3/4 −
9
4

x5/4

=
4− 9x2

4x3/4

Set f ′(x) = 0

4− 9x2

4x3/4 = 0

4− 9x2 = 0
(2− 3x) (2 + 3x) = 0

x = ± 2
3

Critical numbers occur:
1 Where f ′(x) isn’t defined:

0.

2 Where f ′(x) = 0:

2
3 and − 2

3 .

f isn’t defined at −2
3 !

Therefore the critical numbers are 0 and 2
3 .

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Example

Find the critical numbers of f (x) = x1/4(4− x2).

f (x) = x1/4(4− x2)

= 4x1/4 − x9/4

so f ′(x) = x−3/4 − 9
4

x5/4

=
1

x3/4 −
9
4

x5/4

=
4− 9x2

4x3/4

Set f ′(x) = 0

4− 9x2

4x3/4 = 0

4− 9x2 = 0
(2− 3x) (2 + 3x) = 0

x = ± 2
3

Critical numbers occur:
1 Where f ′(x) isn’t defined: 0.
2 Where f ′(x) = 0:

2
3 and − 2

3 .

f isn’t defined at −2
3 !

Therefore the critical numbers are 0 and 2
3 .

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Example

Find the critical numbers of f (x) = x1/4(4− x2).

f (x) = x1/4(4− x2)

= 4x1/4 − x9/4

so f ′(x) = x−3/4 − 9
4

x5/4

=
1

x3/4 −
9
4

x5/4

=
4− 9x2

4x3/4

Set f ′(x) = 0

4− 9x2

4x3/4 = 0

4− 9x2 = 0
(2− 3x) (2 + 3x) = 0

x = ± 2
3

Critical numbers occur:
1 Where f ′(x) isn’t defined: 0.
2 Where f ′(x) = 0:

2
3 and − 2

3 .

f isn’t defined at −2
3 !

Therefore the critical numbers are 0 and 2
3 .

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Example

Find the critical numbers of f (x) = x1/4(4− x2).

f (x) = x1/4(4− x2)

= 4x1/4 − x9/4

so f ′(x) = x−3/4 − 9
4

x5/4

=
1

x3/4 −
9
4

x5/4

=
4− 9x2

4x3/4

Set f ′(x) = 0

4− 9x2

4x3/4 = 0

4− 9x2 = 0
(2− 3x) (2 + 3x) = 0

x = ± 2
3

Critical numbers occur:
1 Where f ′(x) isn’t defined: 0.
2 Where f ′(x) = 0: 2

3 and − 2
3 .

f isn’t defined at −2
3 !

Therefore the critical numbers are 0 and 2
3 .

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Example

Find the critical numbers of f (x) = x1/4(4− x2).

f (x) = x1/4(4− x2)

= 4x1/4 − x9/4

so f ′(x) = x−3/4 − 9
4

x5/4

=
1

x3/4 −
9
4

x5/4

=
4− 9x2

4x3/4

Set f ′(x) = 0

4− 9x2

4x3/4 = 0

4− 9x2 = 0
(2− 3x) (2 + 3x) = 0

x = ± 2
3

Critical numbers occur:
1 Where f ′(x) isn’t defined: 0.
2 Where f ′(x) = 0: 2

3 and − 2
3 .

f isn’t defined at −2
3 !

Therefore the critical numbers are 0 and 2
3 .

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values Fermat’s Theorem

Example

Find the critical numbers of f (x) = x1/4(4− x2).

f (x) = x1/4(4− x2)

= 4x1/4 − x9/4

so f ′(x) = x−3/4 − 9
4

x5/4

=
1

x3/4 −
9
4

x5/4

=
4− 9x2

4x3/4

Set f ′(x) = 0

4− 9x2

4x3/4 = 0

4− 9x2 = 0
(2− 3x) (2 + 3x) = 0

x = ± 2
3

Critical numbers occur:
1 Where f ′(x) isn’t defined: 0.
2 Where f ′(x) = 0: 2

3 and − 2
3 .

f isn’t defined at −2
3 ! Therefore the critical numbers are 0 and 2

3 .

FreeCalc Math 140 Lecture 17 April 16, 2013



(3.1) Maximum and Minimum Values (3.1)The Closed Interval Method

The Closed Interval Method

We know from the Extreme Value Theorem that a continuous function
attains its absolute maximum and minimum on a closed interval [a,b].
The maximum might occur at an endpoint. The minimum might occur
at an endpoint.

To find the absolute maximum and minimum values of a continuous
function f on a closed interval [a,b]:

1 Find the values of f at the critical numbers of f in [a,b].
Find the values c with f ′(c) = 0.
Find the values c where f ′ does not exist.

2 Find the values of f at the endpoints a and b.
3 The absolute maximum of f is maximum of the preceding values;

the absolute minimum value is the minimum.
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(3.1) Maximum and Minimum Values (3.1)The Closed Interval Method

Example
Find the absolute maximum and minimum values of the function
f (x) = −x3 + 2x2 + 4x − 5 on the interval [1,3].

1 2 3 4

1

2

3

4

−1

−2

−3

−4

f ′(x) = − 3x2 + 4x + 4
= (−3x − 2)(x − 2)

If f ′(x) = 0, x = −2
3 or 2.

Need to check:
1 The critical numbers of f in [a,b].
2 The endpoints a and b.

x f (x)

1 0
2 3
3 − 2

Absolute maximum:

3.

Absolute minimum:

−2.
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(3.3) Derivatives and the Shapes of Curves

The Mean Value Theorem

Many results in this section (and others) depend on an important
theorem, called the Mean Value Theorem.
Before we can prove the Mean Value Theorem, we need to prove
Rolle’s Theorem.
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(3.3) Derivatives and the Shapes of Curves

Theorem (Rolle’s Theorem)
Let f be a function that satisfies the following three conditions:

f is continuous on the closed interval [a,b].
f is differentiable on the open interval (a,b).
f (a) = f (b).

Then there is a number c in (a,b) such that f ′(c) = 0.

a c1 c2 b

a bc

The proof breaks down into three cases:
1 f is a horizontal line.
2 f (x) > f (a) for some x in (a,b).
3 f (x) < f (a) for some x in (a,b).
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f is continuous on the closed interval [a,b].
f is differentiable on the open interval (a,b).
f (a) = f (b).

Then there is a number c in (a,b) such that f ′(c) = 0.

Proof.

a c1 c2 b

1 f is a horizontal line.

Then f ′(x) =

0.

Therefore we can take c to be any
number in (a,b).
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(3.3) Derivatives and the Shapes of Curves

Theorem (Rolle’s Theorem)
Let f be a function that satisfies the following three conditions:

f is continuous on the closed interval [a,b].
f is differentiable on the open interval (a,b).
f (a) = f (b).

Then there is a number c in (a,b) such that f ′(c) = 0.

Proof.

a bc

2 f (x) > f (a) for some x in (a,b).

By the Extreme Value Theorem, f has
a maximum in [a,b].
Since f (x) > f (a), this value is
attained at some c in (a,b).
Fermat’s Theorem: f ′(c) = 0.
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By the Extreme Value Theorem, f has
a minimum in [a,b].
Since f (x) < f (a), this value is
attained at some c in (a,b).

Fermat’s Theorem: f ′(c) = 0.
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