Exam II
Math 140 Calculus I

Instructor: Todor Milev
Problem | 1|2 |3 [4|5|6[7]|8]9]10] >
Score [ [ [ [ [ [ [ [ 1 [ 1
The exam is closed books, no calculators allowed. 100 points are worth 100% of the grade.

Name:

Problem 1 (10 pts) Define what it means for a function to be differentiable at a point. Define derivative of a function.

Solution. By definition, a function f is differentiable at a point z if the limit limy_q M = 0 exists. If this the
case, the latter limit is called the derivative of f at x.

Problem 2 (10 pts) Compute the derivative of the function. Simplify your answer to a single fraction.
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Problem 3 (10 pts)Compute the derivative of the function.
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Problem 4 (10 pts)Compute the derivative of the function.

F(@) = sec® (i) .
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Solution. As studied in class, (secz) = ( = secx tan . Therefore




Problem 5 (15 pts)Compute the limit.
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Solution. We have that cos(8z) = 1 — 2sin?(4x). As studied in class, lin%) % =1 and therefore
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Problem 6 (10 pts) Find the equation of the tangent line to the function
y=z(lnx)
at the point (1,0).

Solution.
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Therefore %|z:1 = Inl+1 = 1. Therefore the equation of the tangent line to the graph of y = z(Inz) at (1,0) is

(y—0)=1x (x—1), or in other words, y = = — 1.



Problem 7 (10 pts) Use implicit differentiation to express % via y and x, where x and y satisfy the following relation.
at(z —y) = y* (3 +y).

Solution.
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Problem 8 (10 pts) Use implicit differentiation to find an equation of the tangent line to the curve
25+ 2Py —y® = -1
at the point (—1,—1).

Solution. Direct substitution shows that (—1, —1) satisfies the above equation.
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We can substitute z = —1,y = —1 in the above expression to get
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Therefore the equation of the tangent line at the point (—1,-1)isy — (-=1) = —2(z — (=1)) or y = — 22 — L.
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Solution. As studied in class, lir% (1+ :c)% =e. Sett=—
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Problem 9 (15 pts) Compute lim (1 —
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% Therefore as z — 0o, t — 07, and we have
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The problems before this one sum up to 100%.

Problem 10 (10 pts) For a positive integer n, prove the power rule %(w”) =nx

m=1 ysing the definition of derivative.
Solution. By the definition of derivative we have
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