Exam II Math 140 Calculus I

Instructor: Todor Milev

Name:	Problem	1	2	3	4	5	6	7	8	9	10	\sum
	Score											
The exam is closed books, no calculators allowed. 100 points are worth 100% of the grade.												

Problem 1 (10 pts) Define what it means for a function to be differentiable at a point. Define derivative of a function.

Solution. By definition, a function f is differentiable at a point x if the limit $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} = 0$ exists. If this the case, the latter limit is called the derivative of f at x.

Problem 2 (10 pts) Compute the derivative of the function. Simplify your answer to a single fraction.

(

$$f(x) = \frac{1-2x}{1+\frac{3}{x}}$$

Solution.

$$\frac{1-2x}{1+\frac{3}{x}}\Big)' = \frac{(1-2x)'(1+\frac{3}{x})-(1-2x)(1+3x^{-1})'}{(1+\frac{3}{x})^2} \\ = \frac{-2(1+3x^{-1})-(1-2x)(-3)x^{-2}}{x^{-2}(x+3)^2} \\ = \frac{-2-6x^{-1}+3x^{-2}-6x^{-1}}{x^{-2}(x+3)^2} = \frac{x^{-2}(-2x^2-12x+3)}{x^{-2}(x+3)^2} \\ = \frac{-2x^2-12x+3}{(x+3)^2}$$

Problem 3 (10 pts)Compute the derivative of the function.

$$f(x) = 2^{3^{(\ln x)}}$$

•

Solution. We studied in class that $(p^x)' = p^x \ln p$. Therefore we can apply consecutively the chain rule to get

$$\left(2^{3^{(\ln x)}}\right)' = 2^{3^{(\ln x)}}(\ln 2) \left(3^{(\ln x)}\right)' = 2^{3^{(\ln x)}}(\ln 2)3^{\ln x}(\ln 3) \underbrace{(\ln x)'}_{=\frac{1}{x}} = \frac{\ln 2\ln 3}{x} 2^{3^{(\ln x)}}3^{\ln x} \quad .$$

Problem 4 (10 pts)Compute the derivative of the function.

$$f(x) = \sec^3\left(\frac{2}{x}\right).$$

Solution. As studied in class, $(\sec x)' = \left(\frac{1}{\cos x}\right)' = \frac{-(\cos x)'}{\cos^2 x} = \frac{\sin x}{\cos^2 x} = \sec x \tan x$. Therefore

$$\sec^3\left(\frac{2}{x}\right)' = 3\sec^2\left(\frac{2}{x}\right)\left(\sec\left(\frac{2}{x}\right)\right)' = 3\sec^2\left(\frac{2}{x}\right)\sec\left(\frac{2}{x}\right)\tan\left(\frac{2}{x}\right)\left(\frac{2}{x}\right)' = -\frac{6}{x^2}\sec^3\left(\frac{2}{x}\right)\tan\left(\frac{2}{x}\right)$$

•

Problem 5 (15 pts)Compute the limit.

$$\lim_{x \to 0} \frac{x^2}{\cos(8x) - 1}$$

•

Solution. We have that $\cos(8x) = 1 - 2\sin^2(4x)$. As studied in class, $\lim_{y \to 0} \frac{\sin y}{y} = 1$ and therefore

$$\lim_{x \to 0} \frac{x^2}{\cos(8x) - 1} = \lim_{x \to 0} \frac{x^2}{\cancel{1} - 2\sin^2(4x) - \cancel{1}} = \lim_{x \to 0} \frac{\frac{(4x)^2}{16}}{-2\sin^2(4x)} = -\frac{1}{32} \lim_{x \to 0} \frac{(4x)^2}{\sin^2(4x)} = -\frac{1}{32} \lim_{x \to 0} \frac{1}{\frac{\sin^2(4x)}{(4x)^2}} = -\frac{1}{32} \lim_{x \to 0} \frac{1}{\frac{1}{32} \lim_{x \to$$

Problem 6 (10 pts) Find the equation of the tangent line to the function

$$y = x(\ln x)$$

at the point (1,0).

Solution.

$$\frac{dy}{dx} = (x\ln x)' = (x)'\ln x + x(\ln x)' = \ln x + x\frac{1}{x} = \ln x + 1$$

.

Therefore $\frac{dy}{dx}|_{x=1} = \ln 1 + 1 = 1$. Therefore the equation of the tangent line to the graph of $y = x(\ln x)$ at (1,0) is $(y-0) = 1 \times (x-1)$, or in other words, y = x - 1.

Problem 7 (10 pts) Use implicit differentiation to express $\frac{dy}{dx}$ via y and x, where x and y satisfy the following relation. $x^4(x-y) = y^2(3x+y).$

Solution.

$$\begin{array}{rcl} x^4(x-y) &=& y^2(3x+y) \\ x^5 - x^4y &=& 3y^2x + y^3 \\ 5x^4 - 4x^3y - x^4\frac{dy}{dx} &=& 3y^2 + 6xy\frac{dy}{dx} + 3y^2\frac{dy}{dx} \\ \frac{dy}{dx} \left(x^4 + 6xy + 3y^2\right) &=& 5x^4 - 4x^3y - 3y^2 \\ \frac{dy}{dx} &=& \frac{5x^4 - 4x^3y - 3y^2}{x^4 + 6xy + 3y^2} \end{array}$$

Problem 8 (10 pts) Use implicit differentiation to find an equation of the tangent line to the curve

$$x^5 + x^3y - y^6 = -1$$

at the point (-1, -1).

Solution. Direct substitution shows that (-1, -1) satisfies the above equation.

$$x^{5} + x^{3}y - y^{6} = -1 \qquad \qquad \frac{d}{dx}
 5x^{4} + 3x^{2}y + x^{3}\frac{dy}{dx} - 6y^{5}\frac{dy}{dx} = 0$$

We can substitute x = -1, y = -1 in the above expression to get

$$5(-1)^{4} + 3(-1)^{2}(-1) + (-1)^{3} \frac{dy}{dx}_{|x=-1} - 6(-1)^{5} \frac{dy}{dx}_{|x=-1} = 0$$

$$5 - 3 - \frac{dy}{dx}_{|x=-1} + 6\frac{dy}{dx}_{|x=-1} = 0$$

$$\frac{dy}{dx}_{|x=-1} = -\frac{2}{5}$$

Therefore the equation of the tangent line at the point (-1, -1) is $y - (-1) = -\frac{2}{5}(x - (-1))$ or $y = -\frac{2}{5}x - \frac{7}{5}$.

Problem 9 (15 pts) Compute $\lim_{x\to\infty} \left(1-\frac{3}{x}\right)^x$.

Solution. As studied in class, $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$. Set $t = -\frac{3}{x}$. Therefore as $x \to \infty, t \to 0^-$, and we have

$$\lim_{\substack{x \to \infty \\ t = -\frac{3}{x} \\ t \to 0^{-}}} \left(1 - \frac{3}{x}\right)^x = \lim_{t \to 0^{-}} (1 + t)^{-\frac{3}{t}} = \lim_{t \to 0^{-}} \left((1 + t)^{\frac{1}{t}}\right)^{-3} = \left(\lim_{t \to 0^{-}} (1 + t)^{\frac{1}{t}}\right)^{-3} = e^{-3} = \frac{1}{e^3} \quad .$$

The problems before this one sum up to 100%.

Problem 10 (10 pts) For a positive integer n, prove the power rule $\frac{d}{dx}(x^n) = nx^{n-1}$ using the definition of derivative. Solution. By the definition of derivative we have

$$\frac{d}{dx}(x^{n}) = \lim_{h \to 0} \frac{(x+h)^{n} - x^{n}}{h} = \lim_{h \to 0} \frac{(\not x+h - \not x)((x+h)^{n-1} + (x+h)^{n-2}x + \dots + (x+h)x^{n-2} + x^{n-1})}{h}$$
$$= \lim_{h \to 0} \left(\underbrace{(x+h)^{n-1} + (x+h)^{n-2}x + \dots + (x+h)x^{n-2} + x^{n-1}}_{n \text{ summands total}} \right) = nx^{n-1}$$