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Mean Value theorem

Example

Prove that the function f (x) = x3 + 4x − 4 has exactly one real root.

First show that it has a real root:
f (0) =

−4.

f (1) =

1.

Therefore by the Intermediate Value Theorem f has a root
somewhere between 0 and 1.
Now suppose that it has more than one root and use Rolle’s
Theorem to get a contradiction.
Suppose it has two real roots a and b. Then f (a) = 0 = f (b).
f is a polynomial, so it is continuous and differentiable everywhere.
By Rolle’s Theorem, there is a c in (a,b) such that f ′(c) = 0.
f ′(x) =

3x2 + 4.

Therefore f ′(x) is always positive.
Contradiction.
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Mean Value theorem

Theorem (The Mean Value Theorem)
Let f be a function that is continuous on [a,b] and differentiable on
(a,b). Then there is a number c in (a,b) such that f ′(c) = f (b)−f (a)

b−a .

ba
x

y

H a, f HaLL

H b, f HbLL

Consider the secant line from
(a, f (a)) to (b, f (b)).

Slope: m =

f (b)−f (a)
b−a .

The Mean Value Theorem
says somewhere in (a,b) is a
number c where the slope of
the tangent equals m.
Maybe more than one number.
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Mean Value theorem

Theorem
If f ′(x) = 0 for all x in an interval (a,b), then f is constant on (a,b).

Proof.

Let x1 and x2 be any numbers in (a,b) with x1 < x2.
f is differentiable on (a,b).
Therefore f is differentiable on (x1, x2) and continuous on [x1, x2].
Mean Value Theorem: There exists c in (x1, x2) such that

f ′(c) =
f (x2)− f (x1)

x2 − x1

f ′(c)(x2 − x1) = f (x2)− f (x1)

0 = f (x2)− f (x1)

f (x1) = f (x2)
Therefore f is constant on (a,b).
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Mean Value theorem

Corollary
If f ′(x) = g′(x) for all x in an interval (a,b), then f − g is constant on
(a,b); that is, f (x) = g(x) + c where c is constant.

Proof.

Let F (x) = f (x)− g(x).
Then F ′(x) = f ′(x)− g′(x) = 0 for all x in (a,b).
By the previous theorem, F is constant, so f − g is constant.
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Derivatives and the Shapes of Curves What Does f ′ Say About f?

What Does f ′ Say About f?

c
x

y

f ¢HxL > 0 f ¢HxL < 0

Consider the graph on the left.
f ′(x) > 0 to the left of c and f ′(x) < 0
to the right of c.
f is increasing to the left of c and
decreasing to the right of c.

This property holds more generally:

Increasing/Decreasing Test
1 If f ′(x) > 0 on an interval, then f is increasing on that interval.
2 If f ′(x) < 0 on an interval, then f is decreasing on that interval.
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Derivatives and the Shapes of Curves What Does f ′ Say About f?

Example

Find where the function f (x) = 3x4 + 8x3 − 18x2 + 6 is increasing and
where it is decreasing.

f ′(x) = 12x3 + 24x2 − 36x = 12x(x2 + 2x − 3) = 12x(

x + 3

)(

x − 1

)
Therefore the important intervals are

(−∞,−3), (−3,0), (0,1), (1,∞)

Interval 12x x + 3 x − 1 f ′(x) f
(−∞,−3)

− − − − decreasing

(−3,0)

− + − + increasing

(0,1)

+ + − − decreasing

(1,∞)

+ + + + increasing
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Derivatives and the Shapes of Curves What Does f ′ Say About f?

Recall that if f has a local maximum at c, then c must be a critical
number for f , but if c is a critical number for f , it is not necessarily
a local maximum.

In the first picture, f ′(x) > 0 to the left of c and f ′(x) < 0 to the
right of c.
In other words, f ′(x) changes sign at c.
In the second picture, f ′(x) > 0 to the left of c and f ′(x) > 0 to the
right of c. f ′(x) doesn’t change sign at c.
In the first picture there’s a local maximum, but not in the second.
This suggests a way of testing for local maxima/minima.

c
x

y

f ¢HxL > 0 f ¢HxL < 0

c
x

y

f ¢HxL > 0 f ¢HxL > 0
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Derivatives and the Shapes of Curves What Does f ′ Say About f?

The First Derivative Test
Suppose that c is a critical number of a continuous function f .

1 If f ′ changes from positive to negative at c, then f has a local
maximum at c.

2 If f ′ changes from negative to positive at c, then f has a local
minimum at c.

3 If f ′ doesn’t change signs at c, then f has no local maximum or
minimum at c.

c
x

y

f ¢HxL > 0 f ¢HxL < 0

c
x

y

f ¢HxL < 0 f ¢HxL < 0
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Derivatives and the Shapes of Curves What Does f ′ Say About f?

What Does f ′′ Say About f?

f and g are both increasing functions on (a,b), but they look different
because they bend in different directions.

y = f (x)

Concave up

y = g(x)

Concave down

Definition (Concave Up/Concave Down)
A function is called concave up/down if the line segment between any
two points lies above/below its graph. Suppose f is a differentiable
function. If f lies above all of its tangents on an interval I, then we call it
concave up on I. If f lies below all of its tangents on I, it we call it
concave down on I.
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Derivatives and the Shapes of Curves What Does f ′ Say About f?

y = f (x)

y = g(x)

In the graph of f the slopes of the tangent lines increase as we
move from left to right.

This means f ′ is an increasing function.
This means f ′′ is positive on (a,b).
Similarly g′′ is negative on (a,b).

Concavity Test
1 If f ′′(x) > 0 for all x in I, then the graph of f is concave up on I.
2 If f ′′(x) < 0 for all x in I, then the graph of f is concave down on I.
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Derivatives and the Shapes of Curves What Does f ′ Say About f?

Definition (Inflection Point)
Let f be a twice differentiable function. A point P on a curve y = f (x) is
called an inflection point if f changes from concave up to concave
down or from concave down to concave up at P.

Another way of saying this is that P is an inflection point if f ′′ changes
signs at P.
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Derivatives and the Shapes of Curves

This gives us a new way of checking if critical points are local maxima
or local minima:

The Second Derivative Test
Suppose f ′′ is continuous near c.

1 If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c.
2 If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c.

c
x

y

f ′(c) = 0, so f has a horizontal tangent at c.
f ′′(c) < 0, so f is concave down near c.
This means f lies below its horizontal
tangent.
This means f (c) is a local maximum.
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Derivatives and the Shapes of Curves

Example

Discuss the curve y = f (x) = x4 − 4x3 with respect to concavity,
points of inflection, and local maxima and minima. Sketch the curve.

1 2 3
x

-10

-20

-30

y

y � x4
- 4 x3

Interval f ′′(x) Concave
(−∞,0)

+ up

(0,2)

− down

(2,∞)

+ up

f ′(x) =

4x3 − 12x2 =4x2(x − 3).

f ′′(x) =

12x2 − 24x = 12x(x − 2).

Critical numbers:

0

and

3.

f ′′(0) =

0

and f ′′(3) =

36 > 0.

Second Derivative Test:
Local

minimum

at 3.

f (3) =

−27.

No information about 0.
First Derivative Test:
f ′ is

−

on (−∞,0) and

−

on (0,3).
No local max or min at 0.
Inflection points:

(0,

0

)

and

(2,

− 16

)
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Derivatives and the Shapes of Curves

Example (Example 6, p. 277)

-1 1
x

y

y � 1

Draw the graph of f (x) = e1/x .

f (x) is always positive.
Domain: everything but 0.
Check for vertical asymptote at 0.
t = 1/x : lim

x→0+
e1/x

= lim
t→∞

et =∞.

t = 1/x : lim
x→0−

e1/x

= lim
t→−∞

et = 0.

As x → ±∞, 1/x → 0.
Therefore limx→±∞ e1/x = 1
y = 1 is a horizontal asymptote.

f ′(x) = e1/x(1/x)′ = e1/x(

− x−2

) = − e1/x/x2.

f ′′(x) = −(x2)(−e1/x/x2)− (e1/x)(2x)
x4 =

e1/x(1 + 2x)
x4 .

Always decreasing. Inflection point: (−1/2,e−2).
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