Math 140 Lecture 19

Greg Maloney

with modifications by T. Milev

University of Massachusetts Boston

April 18, 2013

Optimization Problems

The methods we have learned for finding extreme values of functions have applications to real life.

The basic steps are always the same:

- Draw a picture of the problem.
- Assign variable names to all of the quantities involved.
- Find a formula that expresses the desired quantity in terms of the other quantities.
- If the desired quantity has been expressed as a function of more than one variable, use formulas to eliminate all but one of these variables.
- Now use calculus to find the maximum (or minimum) value of the desired quantity.

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He doesn't need to put fencing along the river. What are the dimensions of the field with the largest area?

 $Area = 800 \cdot 800 = 640,000 ft^2$

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He doesn't need to put fencing along the river. What are the dimensions of the field with the largest area?

 $Area = 900 \cdot 600 = 540,000 ft^2$

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He doesn't need to put fencing along the river. What are the dimensions of the field with the largest area?

Area = $1100 \cdot 200 = 220,000$ ft²

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He doesn't need to put fencing along the river. What are the dimensions of the field with the largest area?

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He doesn't need to put fencing along the river. What are the dimensions of the field with the largest area?

Let x and y denote the depth and width of the rectangle (in feet). Let A be its area.

2x + y = 2400

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He doesn't need to put fencing along the river. What are the dimensions of the field with the largest area?

$$2x + y = 2400$$
$$y = 2400 - 2x$$

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He doesn't need to put fencing along the river. What are the dimensions of the field with the largest area?

$$2x + y = 2400$$
$$y = 2400 - 2x$$
$$A = xy$$

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He doesn't need to put fencing along the river. What are the dimensions of the field with the largest area?

2

$$2x + y = 2400$$

 $y = 2400 - 2x$
 $A = xy = x(2400 - 2x)$

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He doesn't need to put fencing along the river. What are the dimensions of the field with the largest area?

2

$$x + y = 2400$$

$$y = 2400 - 2x$$

$$A = xy = x(2400 - 2x)$$

$$= 2400x - 2x^{2}$$

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He doesn't need to put fencing along the river. What are the dimensions of the field with the largest area?

Let x and y denote the depth and width of the rectangle (in feet). Let A be its area.

$$2x + y = 2400$$

$$y = 2400 - 2x$$

$$A = xy = x(2400 - 2x)$$

$$= 2400x - 2x^{2}$$

Notice that $0 \le x \le 1200$.

P

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He doesn't need to put fencing along the river. What are the dimensions of the field with the largest area?

Let x and y denote the depth and width of the rectangle (in feet). Let A be its area.

2x + y = 2400 y = 2400 - 2x A = xy = x(2400 - 2x) $= 2400x - 2x^{2}$ Notice that $0 \le x \le 1200$. Maximize the function A(x): A'(x) =

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He doesn't need to put fencing along the river. What are the dimensions of the field with the largest area?

Let x and y denote the depth and width of the rectangle (in feet). Let A be its area.

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He doesn't need to put fencing along the river. What are the dimensions of the field with the largest area?

Let x and y denote the depth and width of the rectangle (in feet). Let A be its area.

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He doesn't need to put fencing along the river. What are the dimensions of the field with the largest area?

Let x and y denote the depth and width of the rectangle (in feet). Let A be its area.

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He doesn't need to put fencing along the river. What are the dimensions of the field with the largest area?

Let x and y denote the depth and width of the rectangle (in feet). Let A be its area.

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He doesn't need to put fencing along the river. What are the dimensions of the field with the largest area?

Let x and y denote the depth and width of the rectangle (in feet). Let A be its area.

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He doesn't need to put fencing along the river. What are the dimensions of the field with the largest area?

Let x and y denote the depth and width of the rectangle (in feet). Let A be its area.

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He doesn't need to put fencing along the river. What are the dimensions of the field with the largest area?

Let x and y denote the depth and width of the rectangle (in feet). Let A be its area.

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He doesn't need to put fencing along the river. What are the dimensions of the field with the largest area?

Let x and y denote the depth and width of the rectangle (in feet). Let A be its area.

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He doesn't need to put fencing along the river. What are the dimensions of the field with the largest area?

Let x and y denote the depth and width of the rectangle (in feet). Let A be its area.

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He doesn't need to put fencing along the river. What are the dimensions of the field with the largest area?

Let x and y denote the depth and width of the rectangle (in feet). Let A be its area.

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He doesn't need to put fencing along the river. What are the dimensions of the field with the largest area?

Let x and y denote the depth and width of the rectangle (in feet). Let A be its area.

2x + y = 2400 y = 2400 - 2x A = xy = x(2400 - 2x) $= 2400x - 2x^{2}$ Notice that $0 \le x \le 1200$. Maximize the function A(x): A'(x) = 2400 - 4xCritical number: x = 600. So when x = 600 ft and y = 1200 ft

Therefore the maximum area occurs when x = 600 ft and y = 1200 ft.

Find the largest possible area of a rectangle inscribed in a semicircle of radius *r*.

Find the largest possible area of a rectangle inscribed in a semicircle of radius *r*.

$$A = 2xy$$

Find the largest possible area of a rectangle inscribed in a semicircle of radius *r*.

To eliminate *y*, use the fact that (x, y) lies on the semicircle. $y^2 = r^2 - x^2$

$$A = 2xy$$

Find the largest possible area of a rectangle inscribed in a semicircle of radius *r*.

To eliminate y, use the fact that (x, y) lies on the semicircle.

$$y^2 = r^2 - x^2$$
$$y = \sqrt{r^2 - x^2}$$

$$A = 2xy$$

Find the largest possible area of a rectangle inscribed in a semicircle of radius *r*.

To eliminate y, use the fact that (x, y) lies on the semicircle.

$$y^2 = r^2 - x^2$$
$$y = \sqrt{r^2 - x^2}$$

$$A = 2xy$$

Find the largest possible area of a rectangle inscribed in a semicircle of radius *r*.

To eliminate *y*, use the fact that (x, y) lies on the semicircle. $v^2 = r^2 - x^2$

$$y = \sqrt{r^2 - x^2}$$

Let the semicircle have center at the origin. Let (x, y) be the coordinates of the top right corner of the rectangle. Let *A* be its area. Notice that $0 \le x \le r$. $A = 2xy = 2x\sqrt{r^2 - x^2}$

Find the largest possible area of a rectangle inscribed in a semicircle of radius *r*.

To eliminate y, use the fact that (x, y) lies on the semicircle.

$$y^2 = r^2 - x^2$$
$$y = \sqrt{r^2 - x^2}$$

Let the semicircle have center at the origin. Let (x, y) be the coordinates of the top right corner of the rectangle. Let *A* be its area. Notice that $0 \le x \le r$. $A = 2xy = 2x\sqrt{r^2 - x^2}$

A' =

Find the largest possible area of a rectangle inscribed in a semicircle of radius *r*.

To eliminate y, use the fact that (x, y) lies on the semicircle.

$$y^2 = r^2 - x^2$$
$$y = \sqrt{r^2 - x^2}$$

Let the semicircle have center at the origin. Let (x, y) be the coordinates of the top right corner of the rectangle. Let *A* be its area. Notice that $0 \le x \le r$. $A = 2xy = 2x\sqrt{r^2 - x^2}$

$$A' = 2\sqrt{r^2 - x^2} - \frac{2x^2}{\sqrt{r^2 - x^2}}$$

Find the largest possible area of a rectangle inscribed in a semicircle of radius *r*.

To eliminate y, use the fact that (x, y) lies on the semicircle.

$$y^2 = r^2 - x^2$$
$$y = \sqrt{r^2 - x^2}$$

$$A = 2xy = 2x\sqrt{r^2 - x^2}$$

$$A' = 2\sqrt{r^2 - x^2} - \frac{2x}{\sqrt{r^2 - x^2}}$$
$$= \frac{2(r^2 - 2x^2)}{\sqrt{r^2 - x^2}}$$

Find the largest possible area of a rectangle inscribed in a semicircle of radius *r*.

To eliminate y, use the fact that (x, y) lies on the semicircle.

$$y^2 = r^2 - x^2$$
$$y = \sqrt{r^2 - x^2}$$

Let the semicircle have center at the origin. Let (x, y) be the coordinates of the top right corner of the rectangle. Let *A* be its area. Notice that $0 \le x \le r$. $A = 2xy = 2x\sqrt{r^2 - x^2}$

$$A' = 2\sqrt{r^2 - x^2} - \frac{2x^2}{\sqrt{r^2 - x^2}} = \frac{2(r^2 - 2x^2)}{\sqrt{r^2 - x^2}}$$

itical number: x =

Cr

Find the largest possible area of a rectangle inscribed in a semicircle of radius *r*.

To eliminate y, use the fact that (x, y) lies on the semicircle.

$$y^2 = r^2 - x^2$$
$$y = \sqrt{r^2 - x^2}$$

Let the semicircle have center at the origin. Let (x, y) be the coordinates of the top right corner of the rectangle. Let *A* be its area. Notice that $0 \le x \le r$. $A = 2xy = 2x\sqrt{r^2 - x^2}$

$$A' = 2\sqrt{r^2 - x^2} - \frac{2x^2}{\sqrt{r^2 - x^2}}$$
$$= \frac{2(r^2 - 2x^2)}{\sqrt{r^2 - x^2}}$$
itical number: $x = \frac{r}{\sqrt{2}}$.

C

Find the largest possible area of a rectangle inscribed in a semicircle of radius *r*.

To eliminate y, use the fact that (x, y) lies on the semicircle.

$$y^2 = r^2 - x^2$$

Let the semicircle have center at the origin. Let (x, y) be the coordinates of the top right corner of the rectangle. Let *A* be its area. Notice that $0 \le x \le r$.

$$A = 2xy = 2x\sqrt{r^2 - x^2}$$

$$A' = 2\sqrt{r^2 - x^2} - \frac{2x^2}{\sqrt{r^2 - x^2}}$$

$$= \frac{2(r^2 - 2x^2)}{\sqrt{r^2 - x^2}}$$

itical number: $x = \frac{r}{\sqrt{2}}$.

 $y = \sqrt{r^2 - x^2}$ Contrar number: $x = \frac{1}{\sqrt{2}}$. There is a local max. here because A(0) = 0 = A(r). Therefore the maximum area is $A(\frac{r}{\sqrt{2}}) = 2\frac{r}{\sqrt{2}}\sqrt{r^2 - \frac{r^2}{2}} = r^2$, achieved for $x = y = \frac{r}{\sqrt{2}}$

Cr

Find the roots of these equations:

$$x^3 - 5x^2 - 6x = 0$$
 $48x(1+x)^{60} - (1+x)^{60} + 1 = 0$

Find the roots of these equations:

$$x^{3}-5x^{2}-6x=0$$
 $48x(1+x)^{60}-(1+x)^{60}+1=0$
 $x(x-6)(x+1)=0$

Find the roots of these equations:

$$x^{3}-5x^{2}-6x=0$$
 $48x(1+x)^{60}-(1+x)^{60}+1=0$
 $x(x-6)(x+1)=0$

● Roots: *x* = 0, −1, or 6.

Find the roots of these equations:

$$x^{3}-5x^{2}-6x=0$$
 $48x(1+x)^{60}-(1+x)^{60}+1=0$
 $x(x-6)(x+1)=0$

- Roots: *x* = 0, −1, or 6.
- No problem.

Find the roots of these equations:

$$x^{3}-5x^{2}-6x=0$$

 $x(x-6)(x+1)=0$
• Problem.

• Roots:
$$x = 0, -1, \text{ or } 6.$$

• No problem.

Find the roots of these equations:

$$x^3 - 5x^2 - 6x = 0$$

x(x-6)(x+1) = 0

■ Roots: x = 0, -1, or 6.

No problem.

$$48x(1+x)^{60} - (1+x)^{60} + 1 =$$

Problem.

• Plug it into a computer algebra system. The non-zero root is about 0.0076.

0

Find the roots of these equations:

$$x^3 - 5x^2 - 6x = 0$$

x(x-6)(x+1) = 0

• No problem.

$$48x(1+x)^{60} - (1+x)^{60} + 1 = 0$$

Problem.

- Plug it into a computer algebra system. The non-zero root is about 0.0076.
- How does the computer find the root?

Find the roots of these equations:

$$x^3 - 5x^2 - 6x = 0$$

x(x-6)(x+1) = 0

• No problem.

$$48x(1+x)^{60} - (1+x)^{60} + 1 = 0$$

Problem.

- Plug it into a computer algebra system. The non-zero root is about 0.0076.
- How does the computer find the root?
- Probably using Newton's Method.

• Pick a number x_1 .

- Pick a number x_1 .
- Find the tangent to f at $(x_1, f(x_1))$.

- Pick a number x_1 .
- Find the tangent to f at $(x_1, f(x_1))$.
- Call the *x*-intercept of this line *x*₂.

- Pick a number x_1 .
- Find the tangent to f at $(x_1, f(x_1))$.
- Call the *x*-intercept of this line *x*₂.
- Repeat the process using x₂ in the place of x₁:

- Pick a number x_1 .
- Find the tangent to f at $(x_1, f(x_1))$.
- Call the *x*-intercept of this line *x*₂.
- Repeat the process using *x*₂ in the place of *x*₁:
- Find the tangent to f at $(x_2, f(x_2))$.

- Pick a number x_1 .
- Find the tangent to f at $(x_1, f(x_1))$.
- Call the *x*-intercept of this line *x*₂.
- Repeat the process using *x*₂ in the place of *x*₁:
- Find the tangent to f at $(x_2, f(x_2))$.
- Call the *x*-intercept of this line *x*₃.

- Pick a number x_1 .
- Find the tangent to f at $(x_1, f(x_1))$.
- Call the *x*-intercept of this line *x*₂.
- Repeat the process using *x*₂ in the place of *x*₁:
- Find the tangent to f at $(x_2, f(x_2))$.
- Call the *x*-intercept of this line *x*₃.

- Pick a number x_1 .
- Find the tangent to f at $(x_1, f(x_1))$.
- Call the *x*-intercept of this line *x*₂.
- Repeat the process using *x*₂ in the place of *x*₁:
- Find the tangent to f at $(x_2, f(x_2))$.
- Call the *x*-intercept of this line *x*₃.

- Pick a number x_1 .
- Find the tangent to f at $(x_1, f(x_1))$.
- Call the *x*-intercept of this line *x*₂.
- Repeat the process using *x*₂ in the place of *x*₁:
- Find the tangent to f at $(x_2, f(x_2))$.
- Call the *x*-intercept of this line *x*₃.

Equation: y - = (x -)

• Pick a number x_1 .

- Find the tangent to f at $(x_1, f(x_1))$.
- Call the *x*-intercept of this line *x*₂.
- Repeat the process using *x*₂ in the place of *x*₁:
- Find the tangent to f at $(x_2, f(x_2))$.
- Call the *x*-intercept of this line *x*₃.

Equation: $y - = f'(x_1)(x -)$

- Pick a number x_1 .
- Find the tangent to f at $(x_1, f(x_1))$.
- Call the *x*-intercept of this line *x*₂.
- Repeat the process using *x*₂ in the place of *x*₁:
- Find the tangent to f at $(x_2, f(x_2))$.
- Call the *x*-intercept of this line *x*₃.

Equation: $y - f(x_1) = f'(x_1)(x - x_1)$

- Pick a number x_1 .
- Find the tangent to f at $(x_1, f(x_1))$.
- Call the *x*-intercept of this line *x*₂.
- Repeat the process using *x*₂ in the place of *x*₁:
- Find the tangent to f at $(x_2, f(x_2))$.
- Call the *x*-intercept of this line *x*₃.

Equation: $y - f(x_1) = f'(x_1)(x - x_1)$ *x*-intercept: $0 - f(x_1) = f'(x_1)(x_2 - x_1)$

- Pick a number x_1 .
- Find the tangent to f at $(x_1, f(x_1))$.
- Call the *x*-intercept of this line *x*₂.
- Repeat the process using *x*₂ in the place of *x*₁:
- Find the tangent to f at $(x_2, f(x_2))$.
- Call the *x*-intercept of this line *x*₃.

Equation: $y - f(x_1) = f'(x_1)(x - x_1)$ *x*-intercept: $0 - f(x_1) = f'(x_1)(x_2 - x_1)$ $f'(x_1)x_1 - f(x_1) = f'(x_1)x_2$

- Pick a number x_1 .
- Find the tangent to f at $(x_1, f(x_1))$.
- Call the *x*-intercept of this line *x*₂.
- Repeat the process using *x*₂ in the place of *x*₁:
- Find the tangent to f at $(x_2, f(x_2))$.
- Call the *x*-intercept of this line *x*₃.

Equation:
$$y - f(x_1) = f'(x_1)(x - x_1)$$

x-intercept: $0 - f(x_1) = f'(x_1)(x_2 - x_1)$
 $f'(x_1)x_1 - f(x_1) = f'(x_1)x_2$
 $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$

- Pick a number x_1 .
- Find the tangent to f at $(x_1, f(x_1))$.
- Call the *x*-intercept of this line *x*₂.
- Repeat the process using *x*₂ in the place of *x*₁:
- Find the tangent to f at $(x_2, f(x_2))$.

• Call the *x*-intercept of this line
$$x_3$$
.

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

- Pick a number x_1 .
- Find the tangent to f at $(x_1, f(x_1))$.
- Call the *x*-intercept of this line *x*₂.
- Repeat the process using *x*₂ in the place of *x*₁:
- Find the tangent to f at $(x_2, f(x_2))$.

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

Equation: y - = (x -)

• Pick a number x_1 .

- Find the tangent to f at $(x_1, f(x_1))$.
- Call the *x*-intercept of this line *x*₂.
- Repeat the process using *x*₂ in the place of *x*₁:
- Find the tangent to f at $(x_2, f(x_2))$.

• Call the *x*-intercept of this line *x*₃.

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

Equation: $y - = f'(x_2)(x -)$

- Pick a number x_1 .
- Find the tangent to f at $(x_1, f(x_1))$.
- Call the *x*-intercept of this line *x*₂.
- Repeat the process using *x*₂ in the place of *x*₁:
- Find the tangent to f at $(x_2, f(x_2))$.

• Call the *x*-intercept of this line *x*₃.

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

Equation: $y - f(x_2) = f'(x_2)(x - x_2)$

- Pick a number x_1 .
- Find the tangent to f at $(x_1, f(x_1))$.
- Call the x-intercept of this line x₂.
- Repeat the process using x_2 in the place of x_1 :
- Find the tangent to f at $(x_2, f(x_2))$.

• Call the *x*-intercept of this line *x*₃.

Equation:
$$y - f(x_2) = f'(x_2)(x - x_2)$$

x-intercept: $0 - f(x_2) = f'(x_2)(x_3 - x_2)$

Equation:

- Pick a number x_1 .
- Find the tangent to f at $(x_1, f(x_1))$.
- Call the *x*-intercept of this line *x*₂.
- Repeat the process using *x*₂ in the place of *x*₁:
- Find the tangent to f at $(x_2, f(x_2))$.

• Call the *x*-intercept of this line *x*₃.

Equation: $y - f(x_2) = f'(x_2)(x - x_2)$ *x*-intercept: $0 - f(x_2) = f'(x_2)(x_3 - x_2)$ $f'(x_2)x_2 - f(x_2) = f'(x_2)x_3$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

- Pick a number x_1 .
- Find the tangent to f at $(x_1, f(x_1))$.
- Call the *x*-intercept of this line *x*₂.
- Repeat the process using *x*₂ in the place of *x*₁:
- Find the tangent to f at $(x_2, f(x_2))$.
- Call the *x*-intercept of this line x_3 . $f(x_1)$

$$\begin{array}{l} -x_2 \\ -x_2 \end{pmatrix} \qquad \qquad x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \\ -x_2 \end{pmatrix}$$

Equation:
$$y - f(x_2) = f'(x_2)(x - x_2)$$

x-intercept: $0 - f(x_2) = f'(x_2)(x_3 - x_2)$
 $f'(x_2)x_2 - f(x_2) = f'(x_2)x_3$
 $x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$

- Pick a number x_1 .
- Find the tangent to f at $(x_1, f(x_1))$.
- Call the *x*-intercept of this line *x*₂.
- Repeat the process using *x*₂ in the place of *x*₁:
- Find the tangent to f at $(x_2, f(x_2))$.

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$
$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$$

- Pick a number x_1 .
- Find the tangent to f at $(x_1, f(x_1))$.
- Call the *x*-intercept of this line *x*₂.
- Repeat the process using *x*₂ in the place of *x*₁:
- Find the tangent to f at $(x_2, f(x_2))$.

$$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$$
$$x_{3} = x_{2} - \frac{f(x_{2})}{f'(x_{2})}$$
$$x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})}$$

- Newton's Method gives us a sequence x₁, x₂, x₃,... of approximations to a root r of a function f(x).
- If the *n*th approximation is x_n and $f'(x_n) \neq 0$, then the (n + 1)st approximation is

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- If the numbers x_n become closer and closer to r as n becomes large, we say that the sequence converges to r.
- The sequence does not always converge.

Starting with $x_1 = 2$, find the third approximation x_3 to the root of the equation $x^3 - 2x - 5 = 0$.

Starting with $x_1 = 2$, find the third approximation x_3 to the root of the equation $x^3 - 2x - 5 = 0$.

f(x) =

Starting with $x_1 = 2$, find the third approximation x_3 to the root of the equation $x^3 - 2x - 5 = 0$.

 $f(x)=x^3-2x-5.$

Starting with $x_1 = 2$, find the third approximation x_3 to the root of the equation $x^3 - 2x - 5 = 0$.

$$f(x) = x^3 - 2x - 5.$$

$$f'(x) =$$

Starting with $x_1 = 2$, find the third approximation x_3 to the root of the equation $x^3 - 2x - 5 = 0$.

$$f(x) = x^3 - 2x - 5.$$

$$f'(x) = 3x^2 - 2.$$

Starting with $x_1 = 2$, find the third approximation x_3 to the root of the equation $x^3 - 2x - 5 = 0$.

$$f(x) = x^3 - 2x - 5.$$

 $f'(x) = 3x^2 - 2.$
ewton's Method: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

N

Starting with $x_1 = 2$, find the third approximation x_3 to the root of the equation $x^3 - 2x - 5 = 0$.

$$f(x) = x^{3} - 2x - 5.$$

$$f'(x) = 3x^{2} - 2.$$

Newton's Method: $x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})} = x_{n} - \frac{x_{n}^{3} - 2x_{n} - 5}{x_{n}^{3} - 2x_{n} - 5}$

Starting with $x_1 = 2$, find the third approximation x_3 to the root of the equation $x^3 - 2x - 5 = 0$.

$$f(x) = x^{3} - 2x - 5.$$

$$f'(x) = 3x^{2} - 2.$$

Newton's Method: $x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})} = x_{n} - \frac{x_{n}^{3} - 2x_{n} - 5}{3x_{n}^{2} - 2}$

Starting with $x_1 = 2$, find the third approximation x_3 to the root of the equation $x^3 - 2x - 5 = 0$.

$$f(x) = x^{3} - 2x - 5.$$

$$f'(x) = 3x^{2} - 2.$$

$$x_2 = x_1 - \frac{x_1^3 - 2x_1 - 5}{3x_1^2 - 2}$$

Starting with $x_1 = 2$, find the third approximation x_3 to the root of the equation $x^3 - 2x - 5 = 0$.

$$f(x) = x^{3} - 2x - 5.$$

$$f'(x) = 3x^{2} - 2.$$

$$f(x_{0}) = x_{0}^{3} - 2.$$

$$x_2 = x_1 - \frac{x_1^3 - 2x_1 - 5}{3x_1^2 - 2}$$

= (2) - $\frac{(2)^3 - 2(2) - 5}{3(2)^2 - 2}$

Starting with $x_1 = 2$, find the third approximation x_3 to the root of the equation $x^3 - 2x - 5 = 0$.

$$f(x) = x^3 - 2x - 5.$$

 $f'(x) = 3x^2 - 2.$

$$x_2 = x_1 - \frac{x_1^3 - 2x_1 - 5}{3x_1^2 - 2}$$

= (2) - $\frac{(2)^3 - 2(2) - 5}{3(2)^2 - 2}$
= 2.1.

Starting with $x_1 = 2$, find the third approximation x_3 to the root of the equation $x^3 - 2x - 5 = 0$.

$$f(x) = x^3 - 2x - 5.$$

$$f'(x) = 3x^2 - 2.$$

$$x_{2} = x_{1} - \frac{x_{1}^{3} - 2x_{1} - 5}{3x_{1}^{2} - 2} \qquad x_{3} = x_{2} - \frac{x_{2}^{3} - 2x_{2} - 5}{3x_{2}^{2} - 2}$$
$$= (2) - \frac{(2)^{3} - 2(2) - 5}{3(2)^{2} - 2}$$
$$= 2.1.$$

Starting with $x_1 = 2$, find the third approximation x_3 to the root of the equation $x^3 - 2x - 5 = 0$.

$$f(x) = x^3 - 2x - 5.$$

$$f'(x) = 3x^2 - 2.$$

$$\begin{aligned} x_2 &= x_1 - \frac{x_1^3 - 2x_1 - 5}{3x_1^2 - 2} & x_3 &= x_2 - \frac{x_2^3 - 2x_2 - 5}{3x_2^2 - 2} \\ &= (2) - \frac{(2)^3 - 2(2) - 5}{3(2)^2 - 2} &= (2.1) - \frac{(2.1)^3 - 2(2.1) - 5}{3(2.1)^2 - 2} \\ &= 2.1. \end{aligned}$$

Starting with $x_1 = 2$, find the third approximation x_3 to the root of the equation $x^3 - 2x - 5 = 0$.

$$f(x) = x^3 - 2x - 5$$

$$f'(x) = 3x^2 - 2.$$

$$\begin{aligned} x_2 &= x_1 - \frac{x_1^3 - 2x_1 - 5}{3x_1^2 - 2} & x_3 &= x_2 - \frac{x_2^3 - 2x_2 - 5}{3x_2^2 - 2} \\ &= (2) - \frac{(2)^3 - 2(2) - 5}{3(2)^2 - 2} &= (2.1) - \frac{(2.1)^3 - 2(2.1) - 5}{3(2.1)^2 - 2} \\ &= 2.1. &= 2.0946. \end{aligned}$$

Starting with $x_1 = 5$, use two steps of Newton's Method to approximate $\sqrt{28}$.

f(x) =

Starting with $x_1 = 5$, use two steps of Newton's Method to approximate $\sqrt{28}$.

 $f(x)=x^2-28.$

$$f(x) = x^2 - 28.$$

 $f'(x) =$

$$f(x) = x^2 - 28.$$

 $f'(x) = 2x.$

$$f(x) = x^2 - 28.$$

$$f'(x) = 2x.$$

Newton's Method: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Starting with $x_1 = 5$, use two steps of Newton's Method to approximate $\sqrt{28}$.

 $f(x) = x^{2} - 28.$ f'(x) = 2x.Newton's Method: $x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})} = x_{n} - \frac{x_{n}^{2} - 28}{x_{n}^{2} - 28}$

$$f(x) = x^{2} - 28.$$

$$f'(x) = 2x.$$
Newton's Method: $x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})} = x_{n} - \frac{x_{n}^{2} - 28}{2x_{n}}$

$$f(x) = x^{2} - 28.$$

$$f'(x) = 2x.$$
Newton's Method: $x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})} = x_{n} - \frac{x_{n}^{2} - 28}{2x_{n}}$

$$x_2 = x_1 - \frac{{x_1}^2 - 28}{2x_1}$$
$$f(x) = x^{2} - 28.$$

$$f'(x) = 2x.$$
Newton's Method: $x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})} = x_{n} - \frac{x_{n}^{2} - 28}{2x_{n}}$

$$x_2 = x_1 - \frac{x_1^2 - 28}{2x_1}$$
$$= (5) - \frac{(5)^2 - 28}{2(5)}$$

$$f(x) = x^{2} - 28.$$

$$f'(x) = 2x.$$
Newton's Method: $x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})} = x_{n} - \frac{x_{n}^{2} - 28}{2x_{n}}$

$$x_2 = x_1 - \frac{x_1^2 - 28}{2x_1}$$

= (5) - $\frac{(5)^2 - 28}{2(5)}$
= 5.3.

$$f(x) = x^{2} - 28.$$

$$f'(x) = 2x.$$
Newton's Method: $x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})} = x_{n} - \frac{x_{n}^{2} - 28}{2x_{n}}$

$$x_{2} = x_{1} - \frac{x_{1}^{2} - 28}{2x_{1}} \qquad x_{3} = x_{2} - \frac{x_{2}^{2} - 28}{2x_{2}}$$

$$= (5) - \frac{(5)^{2} - 28}{2(5)}$$

$$= 5.3.$$

$$f(x) = x^{2} - 28.$$

$$f'(x) = 2x.$$
Newton's Method: $x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})} = x_{n} - \frac{x_{n}^{2} - 28}{2x_{n}}$

$$x_{2} = x_{1} - \frac{x_{1}^{2} - 28}{2x_{1}} \qquad x_{3} = x_{2} - \frac{x_{2}^{2} - 28}{2x_{2}}$$

$$= (5) - \frac{(5)^{2} - 28}{2(5)} \qquad = (5.3) - \frac{(5.3)^{2} - 28}{2(5.3)}$$

$$= 5.3.$$

$$f(x) = x^{2} - 28.$$

$$f'(x) = 2x.$$
Newton's Method: $x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})} = x_{n} - \frac{x_{n}^{2} - 28}{2x_{n}}$

$$x_{2} = x_{1} - \frac{x_{1}^{2} - 28}{2x_{1}} \qquad x_{3} = x_{2} - \frac{x_{2}^{2} - 28}{2x_{2}}$$

$$= (5) - \frac{(5)^{2} - 28}{2(5)} \qquad = (5.3) - \frac{(5.3)^{2} - 28}{2(5.3)}$$

$$= 5.3. \qquad = 5609/1060.$$