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Optimization Problems

Optimization Problems

The methods we have learned for finding extreme values of functions
have applications to real life.
The basic steps are always the same:

1 Draw a picture of the problem.
2 Assign variable names to all of the quantities involved.
3 Find a formula that expresses the desired quantity in terms of the

other quantities.
4 If the desired quantity has been expressed as a function of more

than one variable, use formulas to eliminate all but one of these
variables.

5 Now use calculus to find the maximum (or minimum) value of the
desired quantity.
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Optimization Problems

Example
A farmer has 2400 ft of fencing and wants to fence off a rectangular
field that borders a straight river. He doesn’t need to put fencing along
the river. What are the dimensions of the field with the largest area?

b

Area = 200 · 2000 = 400,000ft2
x A(x)
0

0

600

720,000

1200

0

Let x and y denote the depth and
width of the rectangle (in feet). Let
A be its area.

2x + y = 2400
y = 2400− 2x
A = xy = x(2400− 2x)

= 2400x − 2x2

Notice that 0 ≤ x ≤ 1200.
Maximize the function A(x):

A′(x) =

2400− 4x

Critical number: x =

600.

Therefore the maximum area occurs when x = 600ft and y = 1200ft.
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Example
A farmer has 2400 ft of fencing and wants to fence off a rectangular
field that borders a straight river. He doesn’t need to put fencing along
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Optimization Problems

Example
A farmer has 2400 ft of fencing and wants to fence off a rectangular
field that borders a straight river. He doesn’t need to put fencing along
the river. What are the dimensions of the field with the largest area?

b

300 300

1800

Area = 300 · 1800 = 540,000ft2

x A(x)
0

0

600

720,000

1200

0

Let x and y denote the depth and
width of the rectangle (in feet). Let
A be its area.

2x + y = 2400
y = 2400− 2x
A = xy = x(2400− 2x)

= 2400x − 2x2

Notice that 0 ≤ x ≤ 1200.
Maximize the function A(x):

A′(x) =

2400− 4x

Critical number: x =

600.

Therefore the maximum area occurs when x = 600ft and y = 1200ft.
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Optimization Problems

Example
A farmer has 2400 ft of fencing and wants to fence off a rectangular
field that borders a straight river. He doesn’t need to put fencing along
the river. What are the dimensions of the field with the largest area?

b

500 500

1400

Area = 500 · 1400 = 700,000ft2

x A(x)
0

0

600

720,000

1200

0

Let x and y denote the depth and
width of the rectangle (in feet). Let
A be its area.

2x + y = 2400
y = 2400− 2x
A = xy = x(2400− 2x)

= 2400x − 2x2

Notice that 0 ≤ x ≤ 1200.
Maximize the function A(x):

A′(x) =

2400− 4x

Critical number: x =

600.

Therefore the maximum area occurs when x = 600ft and y = 1200ft.
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Optimization Problems

Example
A farmer has 2400 ft of fencing and wants to fence off a rectangular
field that borders a straight river. He doesn’t need to put fencing along
the river. What are the dimensions of the field with the largest area?

b

600 600

1200

Area = 600 · 1200 = 720,000ft2

x A(x)
0

0

600

720,000

1200

0

Let x and y denote the depth and
width of the rectangle (in feet). Let
A be its area.

2x + y = 2400
y = 2400− 2x
A = xy = x(2400− 2x)

= 2400x − 2x2

Notice that 0 ≤ x ≤ 1200.
Maximize the function A(x):

A′(x) =

2400− 4x

Critical number: x =

600.

Therefore the maximum area occurs when x = 600ft and y = 1200ft.
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Optimization Problems

Example
A farmer has 2400 ft of fencing and wants to fence off a rectangular
field that borders a straight river. He doesn’t need to put fencing along
the river. What are the dimensions of the field with the largest area?

b

800 800

800

Area = 800 · 800 = 640,000ft2

x A(x)
0

0

600

720,000

1200

0

Let x and y denote the depth and
width of the rectangle (in feet). Let
A be its area.

2x + y = 2400
y = 2400− 2x
A = xy = x(2400− 2x)

= 2400x − 2x2

Notice that 0 ≤ x ≤ 1200.
Maximize the function A(x):

A′(x) =

2400− 4x

Critical number: x =

600.

Therefore the maximum area occurs when x = 600ft and y = 1200ft.
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Optimization Problems

Example
A farmer has 2400 ft of fencing and wants to fence off a rectangular
field that borders a straight river. He doesn’t need to put fencing along
the river. What are the dimensions of the field with the largest area?

b

900 900

600

Area = 900 · 600 = 540,000ft2

x A(x)
0

0

600

720,000

1200

0

Let x and y denote the depth and
width of the rectangle (in feet). Let
A be its area.

2x + y = 2400
y = 2400− 2x
A = xy = x(2400− 2x)

= 2400x − 2x2

Notice that 0 ≤ x ≤ 1200.
Maximize the function A(x):

A′(x) =

2400− 4x

Critical number: x =

600.

Therefore the maximum area occurs when x = 600ft and y = 1200ft.
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Optimization Problems

Example
A farmer has 2400 ft of fencing and wants to fence off a rectangular
field that borders a straight river. He doesn’t need to put fencing along
the river. What are the dimensions of the field with the largest area?

b

1100 1100

200

Area = 1100 · 200 = 220,000ft2

x A(x)
0

0

600

720,000

1200

0

Let x and y denote the depth and
width of the rectangle (in feet). Let
A be its area.

2x + y = 2400
y = 2400− 2x
A = xy = x(2400− 2x)

= 2400x − 2x2

Notice that 0 ≤ x ≤ 1200.
Maximize the function A(x):

A′(x) =

2400− 4x

Critical number: x =

600.

Therefore the maximum area occurs when x = 600ft and y = 1200ft.
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Optimization Problems

Example
A farmer has 2400 ft of fencing and wants to fence off a rectangular
field that borders a straight river. He doesn’t need to put fencing along
the river. What are the dimensions of the field with the largest area?
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x x

y
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x A(x)
0
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Let x and y denote the depth and
width of the rectangle (in feet). Let
A be its area.

2x + y = 2400
y = 2400− 2x
A = xy = x(2400− 2x)

= 2400x − 2x2

Notice that 0 ≤ x ≤ 1200.
Maximize the function A(x):

A′(x) =

2400− 4x

Critical number: x =

600.

Therefore the maximum area occurs when x = 600ft and y = 1200ft.
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Optimization Problems

Example
A farmer has 2400 ft of fencing and wants to fence off a rectangular
field that borders a straight river. He doesn’t need to put fencing along
the river. What are the dimensions of the field with the largest area?
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Notice that 0 ≤ x ≤ 1200.
Maximize the function A(x):

A′(x) =

2400− 4x

Critical number: x =

600.

Therefore the maximum area occurs when x = 600ft and y = 1200ft.
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Example
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Example
A farmer has 2400 ft of fencing and wants to fence off a rectangular
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Example
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Optimization Problems

Example
A farmer has 2400 ft of fencing and wants to fence off a rectangular
field that borders a straight river. He doesn’t need to put fencing along
the river. What are the dimensions of the field with the largest area?

b

x x

y

Area = A = xy

x A(x)
0
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720,000
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Let x and y denote the depth and
width of the rectangle (in feet). Let
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Maximize the function A(x):

A′(x) = 2400− 4x
Critical number: x =
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Example
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the river. What are the dimensions of the field with the largest area?

b

x x

y

Area = A = xy
x A(x)
0

0

600

720,000

1200

0

Let x and y denote the depth and
width of the rectangle (in feet). Let
A be its area.

2x + y = 2400
y = 2400− 2x
A = xy = x(2400− 2x)

= 2400x − 2x2

Notice that 0 ≤ x ≤ 1200.
Maximize the function A(x):

A′(x) = 2400− 4x
Critical number: x = 600.

Therefore the maximum area occurs when x = 600ft and y = 1200ft.

FreeCalc Math 140 Lecture 19 April 18, 2013



Optimization Problems

Example
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Optimization Problems

Example
A farmer has 2400 ft of fencing and wants to fence off a rectangular
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Optimization Problems

Example
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Optimization Problems

Example
Find the largest possible area of a rectangle inscribed in a semicircle
of radius r .

r−r

To eliminate y , use the fact that
(x , y) lies on the semicircle.

y2 = r2 − x2

y =
√

r2 − x2

Let the semicircle have center at
the origin. Let (x , y) be the
coordinates of the top right corner
of the rectangle. Let A be its area.
Notice that 0 ≤ x ≤ r .

A = 2xy = 2x
√

r2 − x2

A′ = 2
√

r2 − x2 − 2x2
√

r2 − x2

=
2(r2 − 2x2)√

r2 − x2

Critical number: x =

r√
2
.

There is a local max. here because A(0) = 0 = A(r). Therefore the

maximum area is A( r√
2
) = 2 r√

2

√
r2 − r2

2 = r2, achieved for x = y = r√
2
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Newton’s Method

Newton’s Method

Find the roots of these equations:

x3 − 5x2 − 6x = 0

x(x − 6)(x + 1) = 0

Roots: x = 0,−1, or 6.
No problem.

48x(1 + x)60 − (1 + x)60 + 1 = 0

Problem.
Plug it into a computer algebra
system. The non-zero root is about
0.0076.
How does the computer find the root?
Probably using Newton’s Method.
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Newton’s Method

Goal: find a root r of f (x).

r x1

x

y

y � f HxL

Pick a number x1.
Find the tangent to f at (x1, f (x1)).
Call the x-intercept of this line x2.
Repeat the process using x2 in
the place of x1:
Find the tangent to f at (x2, f (x2)).
Call the x-intercept of this line x3.

Equation: y −

f (x1)

= f ′(x1)(x −

x1

)

x-intercept: 0− f (x1) = f ′(x1)(x2 − x1)

f ′(x1)x1 − f (x1) = f ′(x1)x2

x2 = x1 −
f (x1)

f ′(x1)

x2 = x1 −
f (x1)

f ′(x1)

x3 = x2 −
f (x2)

f ′(x2)

xn+1 = xn −
f (xn)

f ′(xn)
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Newton’s Method

Newton’s Method gives us a sequence x1, x2, x3, . . . of
approximations to a root r of a function f (x).
If the nth approximation is xn and f ′(xn) 6= 0, then the (n + 1)st
approximation is

xn+1 = xn −
f (xn)

f ′(xn)

If the numbers xn become closer and closer to r as n becomes
large, we say that the sequence converges to r .
The sequence does not always converge.
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Newton’s Method

Example (Newton’s Method, Example 1, p. 313)
Starting with x1 = 2, find the third approximation x3 to the root of the
equation x3 − 2x − 5 = 0.

f (x) =

x3 − 2x − 5.

f ′(x) =

3x2 − 2.

Newton’s Method: xn+1 = xn −
f (xn)

f ′(xn)
= xn −

x3
n − 2xn − 5

3x2
n − 2

x2 = x1 −
x1

3 − 2x1 − 5
3x1

2 − 2
x3 = x2 −

x2
3 − 2x2 − 5
3x2

2 − 2

= (2)− (2)3 − 2(2)− 5
3(2)2 − 2

= (2.1)− (2.1)3 − 2(2.1)− 5
3(2.1)2 − 2

= 2.1. = 2.0946.
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Newton’s Method

Example (Newton’s Method)
Starting with x1 = 5, use two steps of Newton’s Method to approximate√

28.

f (x) =

x2 − 28.

f ′(x) =

2x .

Newton’s Method: xn+1 = xn −
f (xn)

f ′(xn)
= xn −

x2
n − 28

2xn

x2 = x1 −
x1

2 − 28
2x1

x3 = x2 −
x2

2 − 28
2x2

= (5)− (5)2 − 28
2(5)

= (5.3)− (5.3)2 − 28
2(5.3)

= 5.3. = 5609/1060.
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