Math 140 Lecture 20

Greg Maloney

with modifications by T. Milev

University of Massachusetts Boston

April 22, 2013

Antiderivatives

Rectilinear Motion

Antiderivatives

Definition (Antiderivative)

A function *F* is called an antiderivative of *f* on an interval *I* if F'(x) = f(x) for all *x* in *I*.

• Let
$$f(x) = x^2$$
.

- Let $f(x) = x^2$.
- Use the Power Rule to find an antiderivative of *f*:
- If F(x) =, then $F'(x) = x^2 = f(x)$.

- Let $f(x) = x^2$.
- Use the Power Rule to find an antiderivative of *f*:
- If $F(x) = (x) = F'(x) = x^2 = f(x)$.

• Let $f(x) = x^2$.

• Use the Power Rule to find an antiderivative of *f*:

• If $F(x) = \frac{1}{3}x^3$, then $F'(x) = x^2 = f(x)$.

- Let $f(x) = x^2$.
- Use the Power Rule to find an antiderivative of *f*:
- If $F(x) = \frac{1}{3}x^3$, then $F'(x) = x^2 = f(x)$.
- Is this the only one?

- Let $f(x) = x^2$.
- Use the Power Rule to find an antiderivative of *f*:
- If $F(x) = \frac{1}{3}x^3$, then $F'(x) = x^2 = f(x)$.
- Is this the only one?
- No. If $G(x) = \frac{1}{3}x^3 + 1$, then $G'(x) = x^2 = f(x)$.

- Let $f(x) = x^2$.
- Use the Power Rule to find an antiderivative of *f*:
- If $F(x) = \frac{1}{3}x^3$, then $F'(x) = x^2 = f(x)$.
- Is this the only one?
- No. If $G(x) = \frac{1}{3}x^3 + 1$, then $G'(x) = x^2 = f(x)$.
- $\frac{1}{3}x^3 + 2$ will also work.

- Let $f(x) = x^2$.
- Use the Power Rule to find an antiderivative of *f*:
- If $F(x) = \frac{1}{3}x^3$, then $F'(x) = x^2 = f(x)$.
- Is this the only one?
- No. If $G(x) = \frac{1}{3}x^3 + 1$, then $G'(x) = x^2 = f(x)$.
- $\frac{1}{3}x^3 + 2$ will also work.
- Any function of the form $H(x) = \frac{1}{3}x^3 + C$, where *C* is a constant, is an antiderivative of *f*.

Theorem

If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

$$F(x) + C$$

where C is an arbitrary constant.

Find the most general antiderivative of each of the following functions. $f(x) = \sin x \qquad \qquad f(x) = x^n, n \ge 0$

Find the most general antiderivative of each of the following functions. $f(x) = \sin x \qquad \qquad f(x) = x^n, n \ge 0$

• If F(x) =, then $F'(x) = \sin x$.

Find the most general antiderivative of each of the following functions. $f(x) = \sin x \qquad \qquad f(x) = x^n, n \ge 0$

• If F(x) =, then $F'(x) = \sin x$.

Find the most general antiderivative of each of the following functions. $f(x) = \sin x \qquad \qquad f(x) = x^n, n \ge 0$

• If $F(x) = -\cos x$, then $F'(x) = \sin x$.

Find the most general antiderivative of each of the following functions.

 $f(x) = \sin x \qquad \qquad f(x) = x^n, n \ge 0$

- If $F(x) = -\cos x$, then $F'(x) = \sin x$.
- Therefore the most general antiderivative is
 G(x) = cos x + C.

Find the most general antiderivative of each of the following functions.

- $f(x) = \sin x \qquad \qquad f(x) = x^n, n \ge 0$
- If $F(x) = -\cos x$, then $F'(x) = \sin x$.

- If F(x) =, then $F'(x) = x^n$.
- Therefore the most general antiderivative is
 G(x) = cos x + C.

Find the most general antiderivative of each of the following functions.

- $f(x) = \sin x \qquad \qquad f(x) = x^n, n \ge 0$
- If $F(x) = -\cos x$, then $F'(x) = \sin x$.
- Therefore the most general antiderivative is $G(x) = -\cos x + C$.

• If F(x) =, then $F'(x) = x^n$.

Find the most general antiderivative of each of the following functions.

 $f(x) = \sin x \qquad \qquad f(x) = x^n, n \ge 0$

- If $F(x) = -\cos x$, then $F'(x) = \sin x$.
- Therefore the most general antiderivative is
 G(x) = cos x + C.

• If
$$F(x) = \frac{x^{n+1}}{n+1}$$
, then $F'(x) = x^n$.

Find the most general antiderivative of each of the following functions.

 $f(x) = \sin x$

- If $F(x) = -\cos x$, then $F'(x) = \sin x$.
- Therefore the most general antiderivative is $G(x) = -\cos x + C.$

- If $F(x) = \frac{x^{n+1}}{n+1}$, then $F'(x) = x^n$.
- Therefore the most general antiderivative is $G(x) = \frac{x^{n+1}}{n+1} + C.$

 $f(x) = x^n, n > 0$

• If
$$F(x) =$$
, then $F'(x) = \frac{1}{x}$.

• If
$$F(x) =$$
, then $F'(x) = \frac{1}{x}$.

• If
$$F(x) = \ln |x|$$
, then $F'(x) = \frac{1}{x}$.

Find the most general antiderivative of $f(x) = \frac{1}{x}$.

• If
$$F(x) = \ln |x|$$
, then $F'(x) = \frac{1}{x}$.

Find the most general antiderivative of $f(x) = \frac{1}{x}$.

• If
$$F(x) = \ln |x|$$
, then $F'(x) = \frac{1}{x}$.

•
$$\frac{1}{x}$$
 is defined

Find the most general antiderivative of $f(x) = \frac{1}{x}$.

• If
$$F(x) = \ln |x|$$
, then $F'(x) = \frac{1}{x}$.

•
$$\frac{1}{x}$$
 is defined everywhere except at 0.

Find the most general antiderivative of $f(x) = \frac{1}{x}$.

• If
$$F(x) = \ln |x|$$
, then $F'(x) = \frac{1}{x}$.

- $\frac{1}{x}$ is defined everywhere except at 0.
- The most general answer needs two different constants, one for $(-\infty, 0)$ and one for $(0, \infty)$.

Find the most general antiderivative of $f(x) = \frac{1}{x}$.

• If
$$F(x) = \ln |x|$$
, then $F'(x) = \frac{1}{x}$.

- $\frac{1}{x}$ is defined everywhere except at 0.
- The most general answer needs two different constants, one for $(-\infty, 0)$ and one for $(0, \infty)$.

$$G(x) = \begin{cases} \ln |x| + C_1 & \text{if } x > 0\\ \ln |x| + C_2 & \text{if } x < 0 \end{cases}$$

Function	Particular Antiderivative
cf(x)	
f(x) + g(x)	
$x^n (n \neq -1)$	
1	
- X	
<i>e^x</i>	
COS X	
sin x	
sec ² x	
sec x tan x	

Function	Particular Antiderivative
cf(x)	
f(x) + g(x)	
$x^n (n \neq -1)$	
1	
x	
e ^x	
COS X	
sin x	
sec ² x	
sec x tan x	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	
$x^n (n \neq -1)$	
1	
\overline{X}_{x}	
<i>e</i> ^	
COS X	
sin x	
sec ² x	
sec x tan x	

Function	Particular Antiderivative
Cf(x)	cF(x)
f(x)+g(x)	
$x^n (n \neq -1)$	
1	
\overline{X}_{x}	
<i>e</i> ^	
COS X	
sin x	
sec ² x	
sec x tan x	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n (n \neq -1)$	
1	
\overline{x}_{x}	
e.	
COS X	
sin x	
sec ² x	
sec x tan x	
Function	Particular Antiderivative
--------------------	---------------------------
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n (n \neq -1)$	
1	
\overline{X}_{x}	
<i>e</i> ^	
COS X	
sin x	
sec ² x	
sec x tan x	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n (n \neq -1)$	$\frac{x^{n+1}}{n+1}$
1	$n \pm 1$
$\overset{-}{x}_{e^{x}}$	
cos x	
sin x	
sec ² x	
sec x tan x	

Function	Particular Antiderivative
Cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n (n \neq -1)$	$\frac{x^{n+1}}{n+1}$
1	
e^{x}	
COS X	
sin x	
sec ² x	
sec x tan x	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n (n \neq -1)$ $\frac{1}{x}$ e^x	$\frac{x^{n+1}}{n+1}$ $\ln x $
cos x	
sin x	
sec ² x	
sec x tan x	

Function	Particular Antiderivative
Cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n (n \neq -1)$ $\frac{1}{x}$ e^x	$\frac{x^{n+1}}{n+1}$ $\ln x $
cos x	
sin x	
sec ² x	
sec x tan x	

Function	Particular Antiderivative
Cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n (n \neq -1)$ $\frac{1}{x}$ e^x	$\frac{x^{n+1}}{n+1}$ $\ln x $ e^{x}
cos x	
sin x	
sec ² x	
sec x tan x	

Function	Particular Antiderivative
Cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n (n \neq -1)$ $\frac{1}{x}$ e^x	$\frac{x^{n+1}}{n+1}$ $\ln x $ e^{x}
COS X	
sin x	
sec ² x	
sec x tan x	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n (n eq -1)$ $rac{1}{x}$ e^x	$\frac{x^{n+1}}{n+1}$ $\frac{\ln x }{e^x}$
COS X	sin x
sin x	
sec ² x	
sec x tan x	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n (n \neq -1)$	$\frac{x^{n+1}}{n+1}$
1	
x	
e ^x	e ^x
COS X	sin x
sin x	
sec ² x	
sec x tan x	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n (n \neq -1)$	$\frac{x^{n+1}}{n+1}$
1	ln v
X	
e^{x}	e ^x
COS X	sin x
sin x	$-\cos x$
sec ² x	
sec x tan x	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n (n \neq -1)$ $\frac{1}{x}$	$\frac{x^{n+1}}{n+1}$ $\ln x $
<i>e^x</i>	e ^x
cos x	sin x
sin x	$-\cos x$
sec ² x	
sec x tan x	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n (n \neq -1)$	$\frac{x^{n+1}}{n+1}$
1	
$\frac{1}{x}$	$\ln x $
ex	e ^x
COS X	sin x
sin x	$-\cos x$
sec ² x	tan x
sec x tan x	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n (n \neq -1)$	$\frac{x^{n+1}}{n+1}$
$\frac{1}{r}$	$\ln x $
e^{x}	e ^x
cos x	sin x
sin x	$-\cos x$
sec ² x	tan x
sec x tan x	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n (n \neq -1)$	$\frac{x^{n+1}}{n+1}$
$\frac{1}{r}$	$\ln x $
\hat{e}^{x}	e ^x
cos x	sin x
sin x	$-\cos x$
sec ² x	tan x
sec x tan x	Sec X

Find all functions g such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}$$

Find all functions g such that

$$g'(x)=4\sin x+\frac{2x^5-\sqrt{x}}{x}.$$

Rewrite:

$$g'(x) = 4\sin x + 2\frac{x^5}{x} - \frac{\sqrt{x}}{x} = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

Find all functions g such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}$$

Rewrite:

$$g'(x) = 4\sin x + 2\frac{x^5}{x} - \frac{\sqrt{x}}{x} = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g'(x) = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g(x) = 4 \qquad \qquad +2 \qquad -$$

Find all functions g such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}$$

Rewrite:

$$g'(x) = 4\sin x + 2\frac{x^5}{x} - \frac{\sqrt{x}}{x} = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g'(x) = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g(x) = 4 \qquad \qquad +2 \qquad -$$

Find all functions g such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}$$

Rewrite:

$$g'(x) = 4\sin x + 2\frac{x^5}{x} - \frac{\sqrt{x}}{x} = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g'(x) = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g(x) = 4(-\cos x) + 2$$
 -

Find all functions g such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}$$

Rewrite:

$$g'(x) = 4\sin x + 2\frac{x^5}{x} - \frac{\sqrt{x}}{x} = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g'(x) = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g(x) = 4(-\cos x) + 2$$
 -

Find all functions g such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}$$

Rewrite:

$$g'(x) = 4\sin x + 2\frac{x^5}{x} - \frac{\sqrt{x}}{x} = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g'(x) = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$
$$g(x) = 4(-\cos x) + 2\frac{x^5}{5} - \frac{1}{5}$$

Find all functions g such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}$$

Rewrite:

$$g'(x) = 4\sin x + 2\frac{x^5}{x} - \frac{\sqrt{x}}{x} = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g'(x) = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$
$$g(x) = 4(-\cos x) + 2\frac{x^5}{5} - \frac{1}{5}$$

Find all functions g such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}$$

Rewrite:

$$g'(x) = 4\sin x + 2\frac{x^5}{x} - \frac{\sqrt{x}}{x} = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g'(x) = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$
$$g(x) = 4(-\cos x) + 2\frac{x^5}{5} - \frac{x^{1/2}}{\frac{1}{2}}$$

Find all functions g such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}$$

Rewrite:

$$g'(x) = 4\sin x + 2\frac{x^5}{x} - \frac{\sqrt{x}}{x} = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g'(x) = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$
$$g(x) = 4(-\cos x) + 2\frac{x^5}{5} - \frac{x^{1/2}}{\frac{1}{2}} + C$$

Find all functions g such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}$$

Rewrite:

$$g'(x) = 4\sin x + 2\frac{x^5}{x} - \frac{\sqrt{x}}{x} = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g'(x) = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$
$$g(x) = 4(-\cos x) + 2\frac{x^5}{5} - \frac{x^{1/2}}{\frac{1}{2}} + C$$
$$= -4\cos x + \frac{2}{5}x^5 - 2\sqrt{x} + C$$

Find *f* if $f'(x) = \frac{1}{x\sqrt{x}}$ for x > 0, and f(1) = 1.

Find *f* if $f'(x) = \frac{1}{x\sqrt{x}}$ for x > 0, and f(1) = 1. $f'(x) = \frac{1}{x\sqrt{x}} = x^{-3/2}$

Find *f* if $f'(x) = \frac{1}{x\sqrt{x}}$ for x > 0, and f(1) = 1. $f'(x) = \frac{1}{x\sqrt{x}} = x^{-3/2}$

f(x) =

Find *f* if
$$f'(x) = \frac{1}{x\sqrt{x}}$$
 for $x > 0$, and $f(1) = 1$.
 $f'(x) = \frac{1}{x\sqrt{x}} = x^{-3/2}$
 $f(x) = \frac{x^{-1/2}}{-\frac{1}{2}}$

Find *f* if
$$f'(x) = \frac{1}{x\sqrt{x}}$$
 for $x > 0$, and $f(1) = 1$.
 $f'(x) = \frac{1}{x\sqrt{x}} = x^{-3/2}$
 $f(x) = \frac{x^{-1/2}}{-\frac{1}{2}} + C$

Find f if
$$f'(x) = \frac{1}{x\sqrt{x}}$$
 for $x > 0$, and $f(1) = 1$.
 $f'(x) = \frac{1}{x\sqrt{x}} = x^{-3/2}$
 $f(x) = \frac{x^{-1/2}}{-\frac{1}{2}} + C$
 $= -\frac{2}{\sqrt{x}} + C$

Find *f* if $f'(x) = \frac{1}{x\sqrt{x}}$ for x > 0, and f(1) = 1. $f'(x) = \frac{1}{x\sqrt{x}} = x^{-3/2}$ To find *C*, use the fact that f(1) = 1. $f(x) = \frac{x^{-1/2}}{-\frac{1}{2}} + C$ $= -\frac{2}{\sqrt{x}} + C$

Find *f* if $f'(x) = \frac{1}{x\sqrt{x}}$ for x > 0, and f(1) = 1. $f'(x) = \frac{1}{x\sqrt{x}} = x^{-3/2}$ To find *C*, use the fact that f(1) = 1. $f(x) = \frac{x^{-1/2}}{-\frac{1}{2}} + C$ $-\frac{2}{\sqrt{1}} + C = 1$ $= -\frac{2}{\sqrt{x}} + C$

Find *f* if $f'(x) = \frac{1}{x\sqrt{x}}$ for x > 0, and f(1) = 1. $f'(x) = \frac{1}{x\sqrt{x}} = x^{-3/2}$ To find *C*, use the fact that f(1) = 1. $f(x) = \frac{x^{-1/2}}{-\frac{1}{2}} + C$ $-\frac{2}{\sqrt{1}} + C = 1$ $= -\frac{2}{\sqrt{x}} + C$ C = 3

Find *f* if
$$f'(x) = \frac{1}{x\sqrt{x}}$$
 for $x > 0$, and $f(1) = 1$.
 $f'(x) = \frac{1}{x\sqrt{x}} = x^{-3/2}$ To find *C*, use the fact that $f(1) = 1$.
 $f(1) = 1$
 $f(x) = \frac{x^{-1/2}}{-\frac{1}{2}} + C$
 $= -\frac{2}{\sqrt{x}} + C$
Therefore

$$f(x)=-\frac{2}{\sqrt{x}}+3.$$

Rectilinear Motion

• Suppose a particle is moving in a straight line, with position function *s*(*t*).
- Suppose a particle is moving in a straight line, with position function *s*(*t*).
- Its velocity is v(t) =

- Suppose a particle is moving in a straight line, with position function *s*(*t*).
- Its velocity is v(t) = s'(t).

- Suppose a particle is moving in a straight line, with position function s(t).
- Its velocity is v(t) = s'(t).
- Its acceleration is a(t) =

- Suppose a particle is moving in a straight line, with position function s(t).
- Its velocity is v(t) = s'(t).
- Its acceleration is a(t) = v'(t).

- Suppose a particle is moving in a straight line, with position function s(t).
- Its velocity is v(t) = s'(t).
- Its acceleration is a(t) = v'(t).
- Position is the antiderivative of
- Velocity is the antiderivative of

- Suppose a particle is moving in a straight line, with position function *s*(*t*).
- Its velocity is v(t) = s'(t).
- Its acceleration is a(t) = v'(t).
- Position is the antiderivative of velocity.
- Velocity is the antiderivative of

- Suppose a particle is moving in a straight line, with position function *s*(*t*).
- Its velocity is v(t) = s'(t).
- Its acceleration is a(t) = v'(t).
- Position is the antiderivative of velocity.
- Velocity is the antiderivative of

- Suppose a particle is moving in a straight line, with position function s(t).
- Its velocity is v(t) = s'(t).
- Its acceleration is a(t) = v'(t).
- Position is the antiderivative of velocity.
- Velocity is the antiderivative of acceleration.

- Suppose a particle is moving in a straight line, with position function s(t).
- Its velocity is v(t) = s'(t).
- Its acceleration is a(t) = v'(t).
- Position is the antiderivative of velocity.
- Velocity is the antiderivative of acceleration.
- If we know the acceleration and the initial values s(0) and v(0) for position and velocity, then we can find s(t) by antidifferentiating twice.

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground t seconds later.

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground t seconds later.

v'(t) = a(t)

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground t seconds later.

v'(t) = a(t) = -32

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground t seconds later.

v'(t) = a(t) = -32v(t) =

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground t seconds later.

v'(t) = a(t) = -32

v(t) = -32t

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground t seconds later.

v'(t) = a(t) = -32

v(t) = -32t + C

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground *t* seconds later.

v'(t) = a(t) = -32v(t) = -32t + C

To find *C*, use the fact that
$$v(0) = 48$$
.
 $v(0) = 48$

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground t seconds later.

v'(t) = a(t) = -32v(t) = -32t + C

To find
$$C$$
, use the fact that $v(0) = 48$.
 $v(0) = 48$
 $- 32 \cdot 0 + C = 48$

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground t seconds later.

v'(t) = a(t) = -32	To find C, use the fact that $v(0) = 48$.
v(t) = -32t + C	v(0) = 48
= -32t + 48	$-32 \cdot 0 + C = 48$
	<i>C</i> = 48

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground t seconds later.

$$v'(t) = a(t) = -32$$
 To find *C*, use the fact that $v(0) = 48$.
 $v(t) = -32t + C$ $v(0) = 48$
 $= -32t + 48$ $-32 \cdot 0 + C = 48$
 $C = 48$

s'(t) = -32t + 48

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground t seconds later.

$$v'(t) = a(t) = -32$$
 To find *C*, use the fact that $v(0) = 48$.
 $v(t) = -32t + C$ $v(0) = 48$
 $= -32t + 48$ $-32 \cdot 0 + C = 48$
 $C = 48$

s'(t) = -32t + 48s(t) =

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground t seconds later.

$$v'(t) = a(t) = -32$$
 To find *C*, use the fact that $v(0) = 48$.
 $v(t) = -32t + C$ $v(0) = 48$
 $= -32t + 48$ $-32 \cdot 0 + C = 48$
 $C = 48$

s'(t) = -32t + 48 $s(t) = -16t^2 + 48t$

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground t seconds later.

$$v'(t) = a(t) = -32$$
 To find *C*, use the fact that $v(0) = 48$.
 $v(t) = -32t + C$ $v(0) = 48$
 $= -32t + 48$ $-32 \cdot 0 + C = 48$
 $C = 48$

s'(t) = -32t + 48 $s(t) = -16t^2 + 48t + D$

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground t seconds later.

v'(t) = a(t) = -32 v(t) = -32t + C = -32t + 48 s'(t) = -32t + 48 $s(t) = -16t^2 + 48t + D$ To find *C*, use the fact that v(0) = 48. v(0) = 48 $-32 \cdot 0 + C = 48$ To find *D*, use the fact that s(0) = 432. s(0) = 432

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground t seconds later.

 $\begin{array}{ll} v'(t) = a(t) = -32 & \text{To find } C, \text{ use the fact that } v(0) = 48. \\ v(t) = -32t + 6 & v(0) = 48 \\ = -32t + 48 & -32 \cdot 0 + C = 48 \\ c = 48 \\ s'(t) = -32t + 48 & c = 48 \\ s(t) = -16t^2 + 48t + D & \text{To find } D, \text{ use the fact that } s(0) = 432. \\ s(0) = 432 \\ -16 \cdot 0^2 + 48 \cdot 0 + D = 432 \end{array}$

Example

A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground t seconds later.

$$\begin{array}{ll} v'(t) = a(t) = -32 & \text{To find } C, \text{ use the fact that } v(0) = 48. \\ v(t) = -32t + C & v(0) = 48 \\ = -32t + 48 & -32 \cdot 0 + C = 48 \\ c = 48 \\ s'(t) = -32t + 48 & c = 48 \\ s(t) = -16t^2 + 48t + D & s(0) = 432. \\ s(t) = -16t^2 + 48t + 432 & c = 16 \cdot 0^2 + 48 \cdot 0 + D = 432 \\ D = 432 \end{array}$$

• How can we find the area under $y = x^2$ between x = 0 and x = 1?

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width ¹/₃, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width ¹/₃, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width ¹/₃, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width ¹/₃, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width ¹/₃, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width ¹/₃, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width ¹/₃, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width ¹/₃, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width ¹/₃, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.
- We could use the left endpoints to find the heights instead.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width ¹/₃, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.
- We could use the left endpoints to find the heights instead.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width ¹/₃, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.
- We could use the left endpoints to find the heights instead.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width ¹/₃, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.
- We could use the left endpoints to find the heights instead.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width ¹/₃, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.
- We could use the left endpoints to find the heights instead.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width ¹/₃, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.
- We could use the left endpoints to find the heights instead.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width ¹/₃, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.
- We could use the left endpoints to find the heights instead.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width ¹/₃, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.
- We could use the left endpoints to find the heights instead.

- How can we find the area under $y = x^2$ between x = 0 and x = 1?
- We can approximate it using rectangles.
- Divide [0, 1] into three strips of width ¹/₃, and draw rectangles in those strips, the heights of which are the same as the height of the function at the right end of that strip.
- Four strips gives a better approximation. Five is even better.
- We could use the left endpoints to find the heights instead.

Find the sum of the areas of the four approximating rectangles obtained using right endpoints.

• Let *R*₄ denote the sum of the areas of the rectangles.

- Let *R*₄ denote the sum of the areas of the rectangles.
- Each rectangle has width

- Let *R*₄ denote the sum of the areas of the rectangles.
- Each rectangle has width $\frac{1}{4}$.

- Let *R*₄ denote the sum of the areas of the rectangles.
- Each rectangle has width $\frac{1}{4}$.
- The heights are

- Let *R*₄ denote the sum of the areas of the rectangles.
- Each rectangle has width $\frac{1}{4}$.
- The heights are $\left(\frac{1}{4}\right)^2$, $\left(\frac{1}{2}\right)^2$, $\left(\frac{3}{4}\right)^2$, and 1².

- Let *R*₄ denote the sum of the areas of the rectangles.
- Each rectangle has width $\frac{1}{4}$.

$$R_{4} = \frac{1}{4} \cdot \left(\frac{1}{4}\right)^{2} + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^{2} + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^{2} + \frac{1}{4} \cdot (1)^{2}$$

Find the sum of the areas of the four approximating rectangles obtained using right endpoints.

- Let *R*₄ denote the sum of the areas of the rectangles.
- Each rectangle has width $\frac{1}{4}$.

 $y = x^2$

- Let *R*₄ denote the sum of the areas of the rectangles.
- Each rectangle has width $\frac{1}{4}$.
- The heights are $\left(\frac{1}{4}\right)^2, \left(\frac{1}{2}\right)^2, \left(\frac{3}{4}\right)^2$, and 1².
- A similar calculation works for *L*₄, the sum of the areas of the left endpoint rectangles.

$$R_{4} = \frac{1}{4} \cdot \left(\frac{1}{4}\right)^{2} + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^{2} + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^{2} + \frac{1}{4} \cdot (1)^{2} = \frac{15}{32} = 0.46875$$
$$L_{4} = \frac{1}{4} \cdot (0)^{2} + \frac{1}{4} \cdot \left(\frac{1}{4}\right)^{2} + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^{2} + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^{2} = \frac{7}{32} = 0.21875$$

For the region S underneath the parabola $y = x^2$ from 0 to 1, show that the area under the approximating rectangles approaches $\frac{1}{2}$, that is,

 $\lim_{n\to\infty}R_n=\frac{1}{3}.$

1

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

For the region *S* underneath the parabola $y = x^2$ from 0 to 1, show that the area under the approximating rectangles approaches $\frac{1}{3}$, that is,

 $\lim_{n\to\infty}R_n=\frac{1}{3}.$

 $v = x^2$

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

- Each rectangle has width
- The heights are

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

- Each rectangle has width $\frac{1}{n}$.
- The heights are

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

- Each rectangle has width $\frac{1}{n}$.
- The heights are

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

- Each rectangle has width $\frac{1}{n}$.
- The heights are $\left(\frac{1}{n}\right)^2$, $\left(\frac{2}{n}\right)^2$, ..., $\left(\frac{n}{n}\right)^2$.

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

- Each rectangle has width $\frac{1}{n}$.
- The heights are $\left(\frac{1}{n}\right)^2$, $\left(\frac{2}{n}\right)^2$, ..., $\left(\frac{n}{n}\right)^2$.

$$R_n = \frac{1}{n} \left(\frac{1}{n}\right)^2 + \frac{1}{n} \left(\frac{2}{n}\right)^2 + \dots + \frac{1}{n} \left(\frac{n}{n}\right)^2$$

$$\lim_{n \to \infty} R_n = \frac{1}{3}.$$
• Each rectangle has width $\frac{1}{n}$.
• The heights are $(\frac{1}{n})^2, (\frac{2}{n})^2, \dots, (\frac{n}{n})^2$.

$$R_n = \frac{1}{n} \left(\frac{1}{n}\right)^2 + \frac{1}{n} \left(\frac{2}{n}\right)^2 + \dots + \frac{1}{n} \left(\frac{n}{n}\right)^2 = \frac{1}{n^3} (1^2 + 2^2 + \dots + n^2)$$

$$\lim_{n \to \infty} R_n = \frac{1}{3}.$$

• Each rectangle has width $\frac{1}{n}$.
• The heights are $(\frac{1}{n})^2, (\frac{2}{n})^2, \dots, (\frac{n}{n})^2$.

$$R = \frac{1}{n} (\frac{1}{n})^2 + \frac{1}{n} (\frac{2}{n})^2 + \dots + \frac{1}{n} (\frac{n}{n})^2 = \frac{1}{n} (\frac{12}{n} + \frac{22}{n} + \dots + \frac{1}{n} (\frac{n}{n})^2 = \frac{1}{n} (\frac{12}{n} + \frac{22}{n} + \dots + \frac{1}{n} (\frac{n}{n})^2 = \frac{1}{n} (\frac{12}{n} + \frac{22}{n} + \dots + \frac{1}{n} (\frac{n}{n})^2 = \frac{1}{n} (\frac{12}{n} + \frac{22}{n} + \dots + \frac{1}{n} (\frac{n}{n})^2 = \frac{1}{n} (\frac{12}{n} + \frac{22}{n} + \dots + \frac{1}{n} (\frac{n}{n})^2 = \frac{1}{n} (\frac{12}{n} + \frac{22}{n} + \dots + \frac{1}{n} (\frac{n}{n})^2 = \frac{1}{n} (\frac{12}{n} + \frac{22}{n} + \dots + \frac{1}{n} (\frac{n}{n})^2 = \frac{1}{n} (\frac{12}{n} + \frac{22}{n} + \dots + \frac{1}{n} (\frac{n}{n})^2 = \frac{1}{n} (\frac{12}{n} + \frac{22}{n} + \dots + \frac{1}{n} (\frac{n}{n})^2 = \frac{1}{n} (\frac{12}{n} + \frac{22}{n} + \dots + \frac{1}{n} (\frac{n}{n})^2 = \frac{1}{n} (\frac{12}{n} + \frac{22}{n} + \dots + \frac{1}{n} (\frac{n}{n})^2 = \frac{1}{n} (\frac{12}{n} + \frac{22}{n} + \dots + \frac{1}{n} (\frac{n}{n})^2 = \frac{1}{n} (\frac{12}{n} + \frac{22}{n} + \dots + \frac{1}{n} (\frac{n}{n})^2 = \frac{1}{n} (\frac{12}{n} + \frac{1}{n} + \frac{1}{n} (\frac{n}{n})^2 = \frac{1}{n} (\frac{1}{n} + \frac{1}{n} + \frac{1}{n} (\frac{n}{n})^2 = \frac{1}{n} (\frac{1}{n} + \frac{1}{n} + \frac{1}{n} + \frac{1}{n} (\frac{n}{n} + \frac{1}{n} + \frac{1}{n} + \frac{1}{n} + \frac{1}{n} (\frac{n}{n} + \frac{1}{n} + \frac{1}{n} + \frac{1}{n} + \frac{1}{n} (\frac{n}{n} + \frac{1}{n} + \frac{1$$

$$R_n = \frac{1}{n} \left(\frac{1}{n}\right)^2 + \frac{1}{n} \left(\frac{2}{n}\right)^2 + \dots + \frac{1}{n} \left(\frac{n}{n}\right)^2 = \frac{1}{n^3} (1^2 + 2^2 + \dots + n^2)$$

Estimate the area under the curve y = f(x) between *a* and *b*.

- The width of the interval is b a.
- The width of each of the *n* strips is $\Delta x = \frac{b-a}{n}$.
- The strips divide [a, b] into nsubintervals: $[x_0, x_1], [x_1, x_2], \dots, [x_{n-1}, x_n],$ where $x_0 = a$ and $x_n = b$.

• The right endpoints of the subintervals are

$$\begin{array}{rcl} x_1 &=& a + \Delta x \\ x_2 &=& a + 2\Delta x \\ x_3 &=& a + 3\Delta x \end{array}$$

- The height of the *i*th rectangle is *f*(*x_i*).
- The area of the *i*th rectangle is $f(x_i)\Delta x$.

 $R_n = f(x_1)\Delta x + f(x_2)\Delta x + f(x_3)\Delta x + \cdots + f(x_n)\Delta x$

Estimate the area under the curve y = f(x) between *a* and *b*.

- The width of the interval is b a.
- The width of each of the *n* strips is $\Delta x = \frac{b-a}{n}$.
- The strips divide [a, b] into nsubintervals: $[x_0, x_1], [x_1, x_2], \dots, [x_{n-1}, x_n],$ where $x_0 = a$ and $x_n = b$.

• The left endpoints of the subintervals are

$$x_0 = a$$

$$x_1 = a + \Delta x$$

$$x_2 = a + 2\Delta x$$

- The height of the *i*th rectangle is $f(x_{i-1})$.
- The area of the *i*th rectangle is $f(x_{i-1})\Delta x$.

 $L_n = f(x_0)\Delta x + f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_{n-1})\Delta x$

The area of the region *S* that lies under the curve y = f(x) is the limit of the sum of the areas of the approximating rectangles:

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} [f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x]$$

The area of the region *S* that lies under the curve y = f(x) is the limit of the sum of the areas of the approximating rectangles:

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} [f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x]$$

• This limit always exists if *f* is continuous.

The area of the region *S* that lies under the curve y = f(x) is the limit of the sum of the areas of the approximating rectangles:

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} [f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x]$$

- This limit always exists if *f* is continuous.
- We get the same answer if we use left endpoints:

$$A = \lim_{n \to \infty} L_n = \lim_{n \to \infty} [f(x_0)\Delta x + f(x_1)\Delta x + \dots + f(x_{n-1})\Delta x]$$

The area of the region *S* that lies under the curve y = f(x) is the limit of the sum of the areas of the approximating rectangles:

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} [f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x]$$

- This limit always exists if *f* is continuous.
- We get the same answer if we use left endpoints:

$$A = \lim_{n \to \infty} L_n = \lim_{n \to \infty} [f(x_0)\Delta x + f(x_1)\Delta x + \dots + f(x_{n-1})\Delta x]$$

• We get the same answer if we use any number x_i^* in the interval $[x_{i-1}, x_i]$. x_i^* is called a sample point. $A = \lim [f(x_1^*)\Delta x + f(x_2^*)\Delta x + \dots + f(x_n^*)\Delta x]$

$$\mathbf{A} = \lim_{n \to \infty} [f(\mathbf{x}_1^*) \Delta \mathbf{x} + f(\mathbf{x}_2^*) \Delta \mathbf{x} + \dots + f(\mathbf{x}_n^*) \Delta$$

The area of the region *S* that lies under the curve y = f(x) is the limit of the sum of the areas of the approximating rectangles:

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} [f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x]$$

- This limit always exists if *f* is continuous.
- We get the same answer if we use left endpoints:

$$A = \lim_{n \to \infty} L_n = \lim_{n \to \infty} [f(x_0)\Delta x + f(x_1)\Delta x + \dots + f(x_{n-1})\Delta x]$$

• We get the same answer if we use any number x_i^* in the interval $[x_{i-1}, x_i]$. x_i^* is called a sample point. $A = \lim_{n \to \infty} [f(x_1^*)\Delta x + f(x_2^*)\Delta x + \dots + f(x_n^*)\Delta x]$

Definition (Riemann Sum)

A Riemann sum is any sum of the form

$$f(x_1^*)\Delta x + f(x_2^*)\Delta x + \cdots + f(x_n^*)\Delta x.$$

$$\sum_{i=1}^n f(x_i) \Delta x = f(x_1) \Delta x + f(x_2) \Delta x + \dots + f(x_n) \Delta x$$

• We use sigma notation to write sums more compactly.

$$\sum_{i=1}^{n} f(x_i) \Delta x = f(x_1) \Delta x + f(x_2) \Delta x + \dots + f(x_n) \Delta x$$

- We use sigma notation to write sums more compactly.
- \sum is the Greek letter sigma. It tells us to add.

$$\sum_{i=1}^n f(x_i) \Delta x = f(x_1) \Delta x + f(x_2) \Delta x + \dots + f(x_n) \Delta x$$

- We use sigma notation to write sums more compactly.
- \sum is the Greek letter sigma. It tells us to add.
- The subscript tells us to start at 1.

$$\sum_{i=1}^{n} f(x_i) \Delta x = f(x_1) \Delta x + f(x_2) \Delta x + \dots + f(x_n) \Delta x$$

- We use sigma notation to write sums more compactly.
- \sum is the Greek letter sigma. It tells us to add.
- The subscript tells us to start at 1.
- The superscript tells us to finish at *n*.

$$\sum_{i=1}^{n} f(x_i) \Delta x = f(x_1) \Delta x + f(x_2) \Delta x + \dots + f(x_n) \Delta x$$

- We use sigma notation to write sums more compactly.
- \sum is the Greek letter sigma. It tells us to add.
- The subscript tells us to start at 1.
- The superscript tells us to finish at *n*.

Example

$$\sum_{i=1}^{4} 2i\Delta x = 2\Delta x + 4\Delta x + 6\Delta x + 8\Delta x$$

$$\sum_{i=1}^{n} f(x_i) \Delta x = f(x_1) \Delta x + f(x_2) \Delta x + \dots + f(x_n) \Delta x$$

- We use sigma notation to write sums more compactly.
- \sum is the Greek letter sigma. It tells us to add.
- The subscript tells us to start at 1.
- The superscript tells us to finish at *n*.

Example

$$\sum_{i=1}^{4} 2i\Delta x = 2\Delta x + 4\Delta x + 6\Delta x + 8\Delta x$$
$$\sum_{i=3}^{7} i^{2}\Delta x =$$

$$\sum_{i=1}^{n} f(x_i) \Delta x = f(x_1) \Delta x + f(x_2) \Delta x + \dots + f(x_n) \Delta x$$

- We use sigma notation to write sums more compactly.
- \sum is the Greek letter sigma. It tells us to add.
- The subscript tells us to start at 1.
- The superscript tells us to finish at *n*.

Example

$$\sum_{i=1}^{4} 2i\Delta x = 2\Delta x + 4\Delta x + 6\Delta x + 8\Delta x$$
$$\sum_{i=3}^{7} i^{2}\Delta x = 9\Delta x + 16\Delta x + 25\Delta x + 36\Delta x + 49\Delta x$$