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Antiderivatives

Antiderivatives

Definition (Antiderivative)
A function F is called an antiderivative of f on an interval I if
F ′(x) = f (x) for all x in I.
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Antiderivatives

Example

Let f (x) = x2.

Use the Power Rule to find an antiderivative of f :
If F (x) =

1
3x3

, then F ′(x) = x2 = f (x).
Is this the only one?
No. If G(x) = 1

3x3 + 1, then G′(x) = x2 = f (x).
1
3x3 + 2 will also work.

Any function of the form H(x) = 1
3x3 + C, where C is a constant,

is an antiderivative of f .
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Antiderivatives

Theorem
If F is an antiderivative of f on an interval I, then the most general
antiderivative of f on I is

F (x) + C
where C is an arbitrary constant.
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Antiderivatives

Example
Find the most general antiderivative of each of the following functions.

f (x) = sin x

If F (x) =

− cos x

, then
F ′(x) = sin x .
Therefore the most general
antiderivative is
G(x) = − cos x + C.

f (x) = xn,n ≥ 0

If F (x) =

xn+1

n+1

, then
F ′(x) = xn.
Therefore the most general
antiderivative is
G(x) = xn+1

n+1 + C.
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Antiderivatives

Example

Find the most general antiderivative of f (x) =
1
x

.

If F (x) =

ln |x |

, then F ′(x) =
1
x

.

This is valid for any interval on which
1
x

is defined.

1
x

is defined

everywhere except at 0.

The most general answer needs two different constants, one for
(−∞,0) and one for (0,∞).

G(x) =

{
ln |x |+ C1 if x > 0
ln |x |+ C2 if x < 0
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Antiderivatives

Every differentiation formula gives rise to an antidifferentiation formula.
Suppose F ′ = f and G′ = g.

Function Particular Antiderivative
cf (x)

cF (x)

f (x) + g(x)

F (x) + G(x)

xn(n 6= −1)

xn+1

n + 1

1
x

ln |x |

ex

ex

cos x

sin x

sin x

− cos x

sec2 x

tan x

sec x tan x

sec x
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Antiderivatives

Example
Find all functions g such that

g′(x) = 4 sin x +
2x5 −

√
x

x
.

Rewrite:

g′(x) = 4 sin x + 2
x5

x
−
√

x
x

= 4 sin x + 2x4 − 1√
x

Find the antiderivative:
g′(x) = 4 sin x + 2x4 − 1√

x

g(x) = 4

(− cos x)

+ 2

x5

5

−

x1/2

1
2

+ C

= − 4 cos x +
2
5

x5 − 2
√

x + C
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Antiderivatives

Example

Find f if f ′(x) = 1
x
√

x for x > 0, and f (1) = 1.

f ′(x) =
1

x
√

x
= x−3/2

f (x) =
x−1/2

−1
2

+ C

= − 2√
x

+ C

To find C, use the fact that f (1) = 1.
f (1) = 1

− 2√
1

+ C = 1

C = 3

Therefore
f (x) = − 2√

x
+ 3.
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Antiderivatives Rectilinear Motion

Rectilinear Motion

Suppose a particle is moving in a straight line, with position
function s(t).

Its velocity is v(t) =

s′(t).

Its acceleration is a(t) =

v ′(t).

Position is the antiderivative of

velocity.

Velocity is the antiderivative of

acceleration.

If we know the acceleration and the initial values s(0) and v(0) for
position and velocity, then we can find s(t) by antidifferentiating
twice.
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Antiderivatives Rectilinear Motion

An object near the Earth is subject to a gravitational force that
produces a downward acceleration of 32 ft/s2 (or 9.8 m/s2).

Example
A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff
432 ft above the ground. Find its height above the ground t seconds
later.

v ′(t) = a(t)

= −32

v(t) =

− 32t + C

= − 32t + 48

s′(t) = − 32t + 48

s(t) =

− 16t2 + 48t + D

= − 16t2 + 48t + 432

To find C, use the fact that v(0) = 48.
v(0) = 48

− 32 · 0 + C = 48
C = 48

To find D, use the fact that s(0) = 432.
s(0) = 432

− 16 · 02 + 48 · 0 + D = 432
D = 432
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Areas and Distances The Area Problem

The Area Problem

How can we find the area under y = x2 between x = 0 and x = 1?

We can approximate it using rectangles.
Divide [0,1] into three strips of width 1

3 , and draw rectangles in
those strips, the heights of which are the same as the height of the
function at the right end of that strip.
Four strips gives a better approximation.

Five is even better.

We could use the left endpoints to find the heights instead.

y = x2

y = x2
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Areas and Distances The Area Problem

Example
Find the sum of the areas of the four approximating rectangles
obtained using right endpoints.

Let R4 denote the sum of the
areas of the rectangles.
Each rectangle has width

1
4 .

The heights are

(1
4

)2
,
(1

2

)2
,
(3

4

)2
, and 12.

A similar calculation works for
L4, the sum of the areas of the
left endpoint rectangles.

1
4

1
2

3
4

1

y = x2

R4 =
1
4
·
(

1
4

)2

+
1
4
·
(

1
2

)2

+
1
4
·
(

3
4

)2

+
1
4
· (1)2

=
15
32

= 0.46875

L4 =
1
4
· (0)2 +

1
4
·
(

1
4

)2

+
1
4
·
(

1
2

)2

+
1
4
·
(

3
4

)2

=
7
32

= 0.21875
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Areas and Distances The Area Problem

Example

For the region S underneath the parabola y = x2 from 0 to 1, show
that the area under the approximating rectangles approaches 1

3 , that is,

lim
n→∞

Rn =
1
3
.

Each rectangle has width

1
n .

The heights are

(1
n

)2
,
(2

n

)2
, . . . ,

(n
n

)2.

New formula:
12 + 22 + 32 + · · ·+ n2 = n(n+1)(2n+1)

6 .

y = x2

Rn =
1
n

(
1
n

)2

+
1
n

(
2
n

)2

+ · · ·+ 1
n

(n
n

)2
=

1
n3 (12 + 22 + · · ·+ n2)

lim
n→∞

Rn = lim
n→∞

1
n3

n(n + 1)(2n + 1)

6
= lim

n→∞

1
6

(
1 +

1
n

)(
2 +

1
n

)
=

1
3
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Areas and Distances The Area Problem

Estimate the area under the curve y = f (x) between a and b.

a x1 x2 . . . xi−1 xi . . . b

f (xi )

∆x

The width of the interval is b − a.
The width of each of the n strips is
∆x = b−a

n .
The strips divide [a,b] into n
subintervals:
[x0, x1], [x1, x2], . . . , [xn−1, xn],
where x0 = a and xn = b.

The right endpoints of the
subintervals are

x1 = a + ∆x
x2 = a + 2∆x
x3 = a + 3∆x

...

The height of the i th
rectangle is f (xi).
The area of the i th
rectangle is f (xi)∆x .

Rn = f (x1)∆x + f (x2)∆x + f (x3)∆x + · · ·+ f (xn)∆x
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Areas and Distances The Area Problem

Definition (Area Under a Curve)
The area of the region S that lies under the curve y = f (x) is the limit
of the sum of the areas of the approximating rectangles:

A = lim
n→∞

Rn = lim
n→∞

[f (x1)∆x + f (x2)∆x + · · ·+ f (xn)∆x ]

This limit always exists if f is continuous.
We get the same answer if we use left endpoints:

A = lim
n→∞

Ln = lim
n→∞

[f (x0)∆x + f (x1)∆x + · · ·+ f (xn−1)∆x ]

We get the same answer if we use any number x∗i in the interval
[xi−1, xi ]. x∗i is called a sample point.

A = lim
n→∞

[f (x∗1 )∆x + f (x∗2 )∆x + · · ·+ f (x∗n )∆x ]

Definition (Riemann Sum)
A Riemann sum is any sum of the form

f (x∗1 )∆x + f (x∗2 )∆x + · · ·+ f (x∗n )∆x .
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of the sum of the areas of the approximating rectangles:

A = lim
n→∞

Rn = lim
n→∞

[f (x1)∆x + f (x2)∆x + · · ·+ f (xn)∆x ]

This limit always exists if f is continuous.
We get the same answer if we use left endpoints:

A = lim
n→∞

Ln = lim
n→∞

[f (x0)∆x + f (x1)∆x + · · ·+ f (xn−1)∆x ]

We get the same answer if we use any number x∗i in the interval
[xi−1, xi ]. x∗i is called a sample point.
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Areas and Distances The Area Problem

n∑
i=1

f (xi)∆x = f (x1)∆x + f (x2)∆x + · · ·+ f (xn)∆x

We use sigma notation to write sums more compactly.

∑
is the Greek letter sigma. It tells us to add.

The subscript tells us to start at 1.
The superscript tells us to finish at n.

Example
4∑

i=1

2i∆x = 2∆x + 4∆x + 6∆x + 8∆x

7∑
i=3

i2∆x = 9∆x + 16∆x + 25∆x + 36∆x + 49∆x
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