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(4.2) The Definite Integral

(5.2) The Definite Integral

Definition (Definite Integral)
@ Let f be a function defined for a < x < b.
@ Divide the interval [a, b] into n subintervals of equal width
Ax =(b—a)/n.
@ Let xo(= a), X1, X2, ..., Xn(= b) be the endpoints of these
subintervals.

@ Let xj,x5,...,x; be any sample points in these subintervals; that
is, X;'K isin [X,',1,X,'].

Then the definite integral of f from ato b is

b
/ f(x)dx = lim fo)Ax

provided that the limit exists. If the I|m|t eX|sts we say that f is
integrable on [a, b].
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(4.2) The Definite Integral

n

b
/f(x)dx = lim > f(x)Ax,
A i=1

@ [ is called the integration sign.
@ f(x) is called the integrand.
@ aand b are called the limits of integration.
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(4.2) The Definite Integral

n

b
/f(x)dx = lim > f(x)Ax,
A i=1

@ [ is called the integration sign.
@ f(x) is called the integrand.
@ aand b are called the limits of integration.

@ The definite integral is @ number. It does not depend on x. We
could use any variable instead of x.

/abf(X)dX—/abf(t)dt—/:f(r)dr—/:f(g)dg
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(4.2) The Definite Integral

@ We know already that if f(x) is
always positive, then |, : f(x)dx is
the area under the curve.

FreeCalc Math 140 Lecture 21 April 30, 2013



(4.2) The Definite Integral

@ We know already that if f(x) is
always positive, then |, : f(x)dx is
the area under the curve.

FreeCalc Math 140 Lecture 21 April 30, 2013



(4.2) The Definite Integral

@ We know already that if f(x) is
always positive, then |, : f(x)dx is
the area under the curve.

FreeCalc Math 140 Lecture 21 April 30, 2013



(4.2) The Definite Integral

@ We know already that if f(x) is
always positive, then |, : f(x)dx is
the area under the curve.

FreeCalc Math 140 Lecture 21 April 30, 2013



(4.2) The Definite Integral

@ We know already that if f(x) is
always positive, then |, : f(x)dx is
the area under the curve.

FreeCalc Math 140 Lecture 21 April 30, 2013



(4.2) The Definite Integral

@ We know already that if f(x) is
always positive, then |, : f(x)dx is
the area under the curve.

FreeCalc Math 140 Lecture 21 April 30, 2013



(4.2) The Definite Integral

@ We know already that if f(x) is
always positive, then |, : f(x)dx is
the area under the curve.

FreeCalc Math 140 Lecture 21 April 30, 2013



(4.2) The Definite Integral

@ We know already that if f(x) is
always positive, then |, : f(x)dx is
the area under the curve.

FreeCalc Math 140 Lecture 21 April 30, 2013



(4.2) The Definite Integral

@ We know already that if f(x) is
always positive, then |, : f(x)dx is
the area under the curve.

FreeCalc Math 140 Lecture 21 April 30, 2013



(4.2) The Definite Integral

@ We know already that if f(x) is
always positive, then |, : f(x)dx is
the area under the curve.

y =1f(x)

@ What if f(x) is sometimes negative?

\
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(4.2) The Definite Integral

@ We know already that if f(x) is
always positive, then |, : f(x)dx is

the area under the curve.

y =1f(x)

Az

FreeCalc Math 140

@ What if f(x) is sometimes negative?
o Then [2f(x)dx = Ay — Ap.

@ A is the area of the region above the
x-axis and below the graph of f.

@ A is the area of the region below the
x-axis and above the graph of f.
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(4.2) The Definite Integral Evaluating Integrals

There are some formulas that are useful for evaluating integrals.

ii:n(n;—ﬂ

i=1
n
o n(n+1)(2n+1)
2T
n 2
3 _ ”(”4‘1)]
="
n
> c=nc
i=1
n n
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i=1 i=1
n n n
Z(ai+bi):Zai+Zb,-
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(4.2) The Definite Integral Evaluating Integrals

Evaluate [2(x3 — 6x)dx.
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(4.2) The Definite Integral Evaluating Integrals

Evaluate [J(x3 — 6x)dx. Ax = b=2 =3,
n

3
/O( — 6x)d :nlmef
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(4.2) The Definite Integral Evaluating Integrals

Evaluate [J(x3 — 6x)dx. Ax =228

3 n n
/0( — 6x)d _nImefo,Ax_nlem;f<>

S| W
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(4.2) The Definite Integral Evaluating Integrals

Evaluate [J(x3 — 6x)dx. Ax = b=2 =3,

/03( — 6x)d _nImeif nILm@if( )

S|w
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(4.2) The Definite Integral Evaluating Integrals

Evaluate [J(x3 — 6x)dx. Ax = b=2 =3,
n

’ —6x)dx = | f(x)Ax = lim f3’3
[ 0o fim 3 spax = jim 31 (5) 3
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(4.2) The Definite Integral Evaluating Integrals

Evaluate [J(x3 — 6x)dx. Ax = b=2 =3,
n

’ —6x)dx = | f(x)ax = i e
/0( x)d —anooZ X—anooZ ;
3| /3?3 3i

*"“*mooﬁz <n> _6<n>
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(4.2) The Definite Integral Evaluating Integrals

3( b—a _ 3

3 —6x)dx. Ax =52-2=3

Evaluate [;
€ 3 I i f i f 3/ 3
/O(X — 6x)dx = |mz x_anOOZ o

n—oo

3| /3 3i .3 275 18,
n'LmoonZ;Kn) _6<n>] nlmmn;[ns nl]
April 30, 2013
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(4.2) The Definite Integral Evaluating Integrals

Evaluate [J(x3 — 6x)dx. Ax = b=2 =3,
n

& n .
3i\ 3
/o(" ~Bxjdx = fim > f Ax—n'Lmoo;f(n>n
3| /3 3i . 3 [27, 18,
mIE[C) (2] -5 2]
(813 BA~,
=k [mZ’ _n?ZI]
, —
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(4.2) The Definite Integral Evaluating Integrals

Evaluate [J(x3 — 6x)dx. Ax = b=2 =3,
n

3 n .

3i\ 3

/o(" ~Bxjdx = fim > f Ax—n'Lmoo;f(n>n

3| /3 3i . 3 [27, 18,

333 ‘6<n)] i 2[5~
(813 BA~,
- [FRr-E Y
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(4.2) The Definite Integral Evaluating Integrals

Evaluate [J(x3 — 6x)dx. Ax = b=2 =3,
n

& n .
3i\ 3
/o(" ~Bxjdx = fim > f Ax—n'Lmoo;f(n>n
3| /3 3i . 3 [27, 18,
mIE[C) (2] -5 2]
(813 B4~
= jm [mZ’ —,722’]
I

o 81 [n(n+1)]1®2 54n(n+1)
_n||_>moo (n4 [2] 2 2 )
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(4.2) The Definite Integral Evaluating Integrals

Example

Evaluate [J(x3 — 6x)dx. Ax = b=2 =3,
n

3 n :
3/ 3
ué“"“dx‘ﬁ&Ejf A”—ﬂ&gf(n>n
3| /3 3i . 3 [27, 18,
35| (5) (D) - m i[5~ 7
|81, 54
S [T
I

. (81 [n(n+1)]® 5B4n(n+1)
—ﬂ&@dz]—ﬁz)
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(4.2) The Definite Integral Evaluating Integrals

Example

Evaluate [J(x3 — 6x)dx. Ax = b=2 =3,
n

3 n :
3/ 3
ué“"“dx‘ﬁ&Ejf A”—ﬂ&gf(n>n
3| /3 3i . 3 [27, 18,
35| (5) (D) - m i[5~ 7
|81, 54
S [T
I

. (81 [n(n+1)]® 5B4n(n+1)
—ﬂ&@dz]—ﬁz)
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(4.2) The Definite Integral Properties of the Definite Integral

Properties of the Definite Integral

@ So far when we have calculated fab f(x)dx, we have assumed that
a<b.

@ The definition as a limit of Riemann sums will still work even if we
don’t assume this.
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(4.2) The Definite Integral Properties of the Definite Integral

Properties of the Integral
Qo f; cdx = ¢(b — a), where c is any constant.
Q [2[f(x) + g(x)dx = [ f(x)dx + [2 g(x)dx.
Q fab cf(x)dx = cfab f(x)dx, where c is any constant.
Q [P1f(x) — g(x)dx = [2 f(x)dx — [P g(x)dx.
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(4.2) The Definite Integral Properties of the Definite Integral

Use the properties of integrals to evaluate
1
/ (4 + 3x2)dx
0
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1 1 1
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(4.2) The Definite Integral Properties of the Definite Integral
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/ 4dx + 3 / dx Property

FreeCalc Math 140 Lecture 21 April 30, 2013



(4.2) The Definite Integral Properties of the Definite Integral
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(4.2) The Definite Integral Properties of the Definite Integral
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/ (4 +3x?)dx = / 4dx+/ 3x2dx  Property 2
0

= / 4dx + 3 / Property 3

= +3 / x?dx  Property
0
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(4.2) The Definite Integral Properties of the Definite Integral

Use the properties of integrals to evaluate
1 1 1
/ (4 4+ 3x%)dx = / 4dx + / 3x2dx  Property 2
0 0 0

]
= / 4dx+3 [ x?dx  Property 3
0 0

—=4(1-0)+3 | xdx  Property 1
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(4.2) The Definite Integral Properties of the Definite Integral

Use the properties of integrals to evaluate
/ (4 + 3x?)dx = / 4dx+/ 3x2dx  Property 2
0

/ 4dx + 3 / Property 3

=4(1-0 +3/ x?dx  Property 1
0

)
; From preceding lectures/slides

443
5
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(4.2) The Definite Integral Properties of the Definite Integral

Properties of the Integral

=) /a  Hx)dx = /a " fodx + /c ’ fx0dx
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(4.2) The Definite Integral Properties of the Definite Integral

Properties of the Integral

=) /a ’ Hx0dx = /a " fodx + /C ’ fx0dx
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(4.2) The Definite Integral Properties of the Definite Integral

Properties of the Integral

o /ab f(x)dx = /ac f(x)dx + /Cb f(x)dx
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(4.2) The Definite Integral Properties of the Definite Integral

If it is known that fom f(x)dx =17 and f08 f(x)dx = 12, then find
fsm f(x)dx.
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(4.2) The Definite Integral Properties of the Definite Integral

If it is known that fom f(x)dx =17 and f08 f(x)dx = 12, then find
fsm f(x)dx.

8 10
/ f)dx + [ f(x)dx
0 8
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If it is known that fom f(x)dx =17 and f08 f(x)dx = 12, then find
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10

f(x)dx = /010 f(x)dx — /08 f(x)dx

8
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(4.2) The Definite Integral Properties of the Definite Integral

If |t is known that f x)dx = 17 and fo f(x)dx = 12, then find
8 f( )dx.

8 10 10
/ f)dx+ [ fox)dx = / F(x)dx
0 8 0

10 10 8
[ foax = /0 F(x)dx — /0 F(x)dx
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/ f)dx+ [ fox)dx = / F(x)dx
0 8 0

10 10 8
[ foax = /0 F(x)dx — /0 F(x)dx
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(4.2) The Definite Integral Properties of the Definite Integral

If it is known that [° f(x)dx = 17 and [J f(x)dx = 12, then find
810 f(x)dx.
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/ f)dx+ [ fox)dx = / F(x)dx
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f(x)dx = /10 f(x)dx — /8 f(x)dx
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(4.2) The Definite Integral Properties of the Definite Integral

If it is known that [° f(x)dx = 17 and [J f(x)dx = 12, then find
810 f(x)dx.

8 10 10
/ f)dx+ [ fox)dx = / F(x)dx
0 8 0

10

f(x)dx = /10 f(x)dx — /8 f(x)dx
0 0
=17-12

8

FreeCalc Math 140 Lecture 21 April 30, 2013



(4.2) The Definite Integral Properties of the Definite Integral

If it is known that fom f(x)dx =17 and f08 f(x)dx = 12, then find
810 f(x)dx.

8 10 10
/ f)dx+ [ fox)dx = / F(x)dx
0 8 0

10 10 8
f(x)dx = / f(x)dx — / f(x)dx
8 0 0
=17-12
=5
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(4.2) The Definite Integral Properties of the Definite Integral

Comparison Properties of the Integral

b
Q Iff(x) >0foralla< x < b, then / f(x)dx > 0.
a
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(4.2) The Definite Integral Properties of the Definite Integral

Comparison Properties of the Integral

b b
@ If f(x) < g(x) forall a < x < b, then / f(x)dx < / g(x)dx.
a a

o4
o+

/ab f(x)dx < /ab g(x)dx
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(4.2) The Definite Integral Properties of the Definite Integral

Comparison Properties of the Integral

b b
@ If f(x) < g(x) forall a < x < b, then / f(x)dx < / g(x)dx.
a a
\NV =g(x)
Iy =f(x)
a b

| /a  H)dx < /a ’ g(x)dx
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(4.2) The Definite Integral Properties of the Definite Integral

Comparison Properties of the Integral

b b
@ If f(x) < g(x) forall a < x < b, then / f(x)dx < / g(x)dx.
a a

FreeCalc Math 140
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(4.2) The Definite Integral Properties of the Definite Integral

Comparison Properties of the Integral
Q Ifm<f(x) <Mforalla< x < b, then

b
m(b—a) < / f(x)dx < M(b — a)

y =1f(x)
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(4.2) The Definite Integral Properties of the Definite Integral

Comparison Properties of the Integral
Q Ifm<f(x) <Mforalla< x < b, then

b
m(b—a) < / f(x)dx < M(b — a)

v\/y :f(X)

(—4__)
a b
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(4.2) The Definite Integral Properties of the Definite Integral

Comparison Properties of the Integral
Q Ifm<f(x) <Mforalla< x < b, then

b
m(b—a) < / f(x)dx < M(b— a)

y =1f(x)
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(4.2) The Definite Integral Properties of the Definite Integral

Comparison Properties of the Integral
Q Ifm<f(x) <Mforalla< x < b, then

b
m(b—a) < / f(x)dx < M(b — a)

y =1(x)
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