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(5.3) Evaluating Definite Integrals The Evaluation Theorem

Theorem (The Evaluation Theorem)
If f is continuous on [a,b], then∫ b

a
f (x)dx = F (b)− F (a),

where F is any antiderivative of f .
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(5.3) Evaluating Definite Integrals The Evaluation Theorem

Example

Evaluate the integral
∫ 1
−2 x3 dx .

x3 is continuous on [−2,1] (in fact, it’s continuous everywhere).
An antiderivative is F (x) =

1
4x4.

∫ 1

−2
x3 dx = F (1)− F (− 2) =

1
4
(1)4 − 1

4
(−2)4 =

1
4
− 16

4
= −15

4
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(5.3) Evaluating Definite Integrals The Evaluation Theorem

We often use the notation
F (x)]ba = F (b)− F (a)

or
[F (x)]ba = F (b)− F (a)

Therefore we can write ∫ b

a
f (x)dx = F (x)]ba

or ∫ b

a
f (x)dx = [F (x)]ba
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(5.3) Evaluating Definite Integrals The Evaluation Theorem

Example

Find the area under the parabola y = x2 from 0 to 1.

x2 is continuous on [0,1] (in fact, it’s continuous everywhere).
An antiderivative is

1
3x3.

∫ 1

0
x2 dx =

[
1
3

x3
]1

0
=

1
3
(1)3 − 1

3
(0)3 =

1
3
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(5.3) Evaluating Definite Integrals The Evaluation Theorem

Example
Find the area under the cosine curve from 0 to b, where 0 ≤ b ≤ π/2.

cos x is continuous on [0, π/2] (in fact, it’s continuous everywhere).
An antiderivative is

sin x .

∫ b

0
cos x dx = [sin x ]b0 = sin(b)− sin(0) = sin b
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(5.3) Evaluating Definite Integrals Indefinite Integrals

Indefinite Integrals

The Evaluation Theorem establishes a connection between
antiderivatives and definite integrals.

It says that
∫ b

a f (x)dx equals F (b)− F (a), where F is an
antiderivative of f .
We need convenient notation for writing antiderivatives.
This is what the indefinite integral is.

Definition (Indefinite Integral)
The indefinite integral of f is another way of saying the antiderivative of
f , and is written

∫
f (x)dx . In other words,∫

f (x)dx = F (x) means F ′(x) = f (x).
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(5.3) Evaluating Definite Integrals Indefinite Integrals

Example ∫
x4dx =

x5

5
+ C

because
d

dx

(
x5

5
+ C

)
= x4.

This shows that the indefinite integral is a whole family of
functions.
Example 1b, p. 318: the general antiderivative of 1

x is

F (x) =
{

ln |x |+ C1 if x > 0
ln |x |+ C2 if x < 0

We adopt the convention that the formula for an indefinite integral
is only valid on one interval.∫ 1

x dx = ln |x |+ C, and this is valid either on (−∞,0) or (0,∞).
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(5.3) Evaluating Definite Integrals Indefinite Integrals

Example
Find the general indefinite integral.∫

(10x4 − 2 sec2 x)dx

= 10
∫

x4dx − 2
∫

sec2 xdx

= 10

x5

5

− 2

tan x

+ C

= 2x5 − 2 tan x + C
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(5.3) Evaluating Definite Integrals Indefinite Integrals

Example
Find the general indefinite integral.∫

cos θ
sin2 θ

dθ

=

∫ (
1

sin θ

)(
cos θ
sin θ

)
dθ

=

∫

csc θ cot θ

dθ

= − csc θ + C
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(5.3) Evaluating Definite Integrals Indefinite Integrals

Example∫ 3

0
(x3 − 6x)dx

=

[∫
(x3 − 6x)dx

]3

0

=

[ ∫
x3dx − 6

∫
xdx

]3

0

=

[

x4

4

− 6

x2

2

]3

0

=

(
1
4
· 34 − 3 · 32

)
−
(

1
4
· 04 − 3 · 02

)
=

81
4
− 27− 0 + 0 = −27

4
.

FreeCalc Math 140 Lecture 22 April 30, 2013



(5.3) Evaluating Definite Integrals Indefinite Integrals

Example∫ 3

0
(x3 − 6x)dx =

[∫
(x3 − 6x)dx

]3

0

=

[ ∫
x3dx − 6

∫
xdx

]3

0

=

[

x4

4

− 6

x2

2

]3

0

=

(
1
4
· 34 − 3 · 32

)
−
(

1
4
· 04 − 3 · 02

)
=

81
4
− 27− 0 + 0 = −27

4
.

FreeCalc Math 140 Lecture 22 April 30, 2013



(5.3) Evaluating Definite Integrals Indefinite Integrals

Example∫ 3

0
(x3 − 6x)dx =

[∫
(x3 − 6x)dx

]3

0

=

[ ∫
x3dx − 6

∫
xdx

]3

0

=

[

x4

4

− 6

x2

2

]3

0

=

(
1
4
· 34 − 3 · 32

)
−
(

1
4
· 04 − 3 · 02

)
=

81
4
− 27− 0 + 0 = −27

4
.

FreeCalc Math 140 Lecture 22 April 30, 2013



(5.3) Evaluating Definite Integrals Indefinite Integrals

Example∫ 3

0
(x3 − 6x)dx =

[∫
(x3 − 6x)dx

]3

0

=

[ ∫
x3dx − 6

∫
xdx

]3

0

=

[

x4

4

− 6

x2

2

]3

0

=

(
1
4
· 34 − 3 · 32

)
−
(

1
4
· 04 − 3 · 02

)
=

81
4
− 27− 0 + 0 = −27

4
.

FreeCalc Math 140 Lecture 22 April 30, 2013



(5.3) Evaluating Definite Integrals Indefinite Integrals

Example∫ 3

0
(x3 − 6x)dx =

[∫
(x3 − 6x)dx

]3

0

=

[ ∫
x3dx − 6

∫
xdx

]3

0

=

[
x4

4
− 6

x2

2

]3

0

=

(
1
4
· 34 − 3 · 32

)
−
(

1
4
· 04 − 3 · 02

)
=

81
4
− 27− 0 + 0 = −27

4
.

FreeCalc Math 140 Lecture 22 April 30, 2013



(5.3) Evaluating Definite Integrals Indefinite Integrals

Example∫ 3

0
(x3 − 6x)dx =

[∫
(x3 − 6x)dx

]3

0

=

[ ∫
x3dx − 6

∫
xdx

]3

0

=

[
x4

4
− 6

x2

2

]3

0

=

(
1
4
· 34 − 3 · 32

)
−
(

1
4
· 04 − 3 · 02

)
=

81
4
− 27− 0 + 0 = −27

4
.

FreeCalc Math 140 Lecture 22 April 30, 2013



(5.3) Evaluating Definite Integrals Indefinite Integrals

Example∫ 3

0
(x3 − 6x)dx =

[∫
(x3 − 6x)dx

]3

0

=

[ ∫
x3dx − 6

∫
xdx

]3

0

=

[
x4

4
− 6

x2

2

]3

0

=

(
1
4
· 34 − 3 · 32

)
−
(

1
4
· 04 − 3 · 02

)
=

81
4
− 27− 0 + 0 = −27

4
.

FreeCalc Math 140 Lecture 22 April 30, 2013



(5.3) Evaluating Definite Integrals Indefinite Integrals

Example∫ 3

0
(x3 − 6x)dx =

[∫
(x3 − 6x)dx

]3

0

=

[ ∫
x3dx − 6

∫
xdx

]3

0

=

[
x4

4
− 6

x2

2

]3

0

=

(
1
4
· 34 − 3 · 32

)
−
(

1
4
· 04 − 3 · 02

)

=
81
4
− 27− 0 + 0 = −27

4
.

FreeCalc Math 140 Lecture 22 April 30, 2013



(5.3) Evaluating Definite Integrals Indefinite Integrals

Example∫ 3

0
(x3 − 6x)dx =

[∫
(x3 − 6x)dx

]3

0

=

[ ∫
x3dx − 6

∫
xdx

]3

0

=

[
x4

4
− 6

x2

2

]3

0

=

(
1
4
· 34 − 3 · 32

)
−
(

1
4
· 04 − 3 · 02

)
=

81
4
− 27− 0 + 0 = −27

4
.

FreeCalc Math 140 Lecture 22 April 30, 2013



(5.3) Evaluating Definite Integrals Indefinite Integrals

Example

Evaluate:

=

∫ 9

1

2t2 + t2
√

t − 1
t2 dt

=

∫ 9

1
(2 + t1/2 − t−2)dt =

[∫
(2 + t1/2 − t−2)dt

]9

1

=

[ ∫
2dt +

∫
t1/2dt −

∫
t−2dt

]9

1

=

[

2t

+

t3/2

3/2

−

t−1

−1

]9

1

=

[
2t +

2
3

t3/2 +
1
t

]9

1

=

(
2 · 9 +

2
3
· 93/2 +

1
9

)
−
(

2 · 1 +
2
3
· 13/2 +

1
1

)
= 18 + 18 +

1
9
− 2− 2

3
− 1 =

292
9
.
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(5.3) Evaluating Definite Integrals The Net Change Theorem

The Evaluation Theorem says that, if f is continuous on [a,b], then∫ b

a
f (x)dx = F (b)− F (a),

where F (x) is an antiderivative of f (x).
This means F ′ = f , so∫ b

a
F ′(x)dx = F (b)− F (a),

F ′(x) is the rate of change of y = F (x) with respect to x .
F (b)− F (a) is the net change in y as x changes from a to b.

Theorem (The Net Change Theorem)
The integral of the rate of change is the net change:∫ b

a
F ′(x)dx = F (b)− F (a).
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(5.3) Evaluating Definite Integrals The Net Change Theorem

If an object moves along a straight line with position function s(t),
then its velocity is v(t) = s′(t).
In this case, the Net Change Theorem says∫ t2

t1
v(t)dt = s(t2)− s(t1).

This is the displacement, or net change of position.
If we want to calculate the distance the object travels, we have to
consider separately the intervals where v(t) ≥ 0 (object moves to
the right) and v(t) ≤ 0 (object moves to the left).

t1 t2

v(t)

A1

A2

A3

displacement =
∫ t2

t1
v(t)dt

= A1 − A2 + A3

distance =

∫ t2

t1
|v(t)|dt

= A1 + A2 + A3
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(5.3) Evaluating Definite Integrals The Net Change Theorem

Example
A particle moves along a line so that its velocity at time t is
v(t) = t2 − t − 6 (measured in meters per second).

1 Find the displacement of the particle during the time period
1 ≤ t ≤ 4.

2 Find the distance traveled during this time period.
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(5.3) Evaluating Definite Integrals The Net Change Theorem

Example
A particle moves along a line so that its velocity at time t is
v(t) = t2 − t − 6 (measured in meters per second).

1 Find the displacement of the particle during the time period
1 ≤ t ≤ 4.

The displacement is

s(4)− s(1) =
∫ 4

1
v(t)dt

=

∫ 4

1
(t2 − t − 6)dt

=

[

t3

3

−

t2

2

−

6t

]
4
1

=

(
43

3
− 42

2
− 6 · 4

)
−
(

13

3
− 12

2
− 6 · 1

)
= − 9

2
.

Therefore the particle moves 4.5m to the left.
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Example
A particle moves along a line so that its velocity at time t is
v(t) = t2 − t − 6 (measured in meters per second).

2 Find the distance traveled during this time period.
v(t) = t2 − t − 6 =

(t − 3)(t + 2) and so v(t) ≤ 0 on the interval

[1,3]

and v(t) ≥ 0 on the interval

[3,4].

The distance is∫ 4

1
|v(t)|dt =

∫ 3

1
[−v(t)]dt +

∫ 4

3
v(t)dt

=

∫ 3

1
(−t2 + t + 6)dt +

∫ 4

3
(t2 − t − 6)dt

=

[
− t3

3
+

t2

2
+ 6t

]3

1
+

[
t3

3
− t2

2
− 6t

]4

3

=
61
6
≈ 10.17m
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