Math 140 Lecture 24

Greg Maloney

with modifications by T. Milev

University of Massachusetts Boston

May 7, 2013

Outline

- (5.5) The Substitution Rule
 - Symmetry

Outline

- (5.5) The Substitution Rule
 - Symmetry

(6.1) More About Areas

Evaluate
$$\int 3x^5 \sqrt{1+x^3} dx$$
.

Evaluate
$$\int 3x^5\sqrt{1+x^3}dx$$
.

Let u =

Evaluate
$$\int 3x^5 \sqrt{1+x^3} dx$$
.

Let
$$u = 1 + x^3$$
.

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx$$
.
Let $u = 1 + x^3$.
Then $du =$

Evaluate
$$\int 3x^5 \sqrt{1+x^3} dx$$
.
Let $u=1+x^3$.
Then $du=3x^2 dx$.

Evaluate
$$\int 3x^5 \sqrt{1+x^3} dx = \int 3x^2 x^3 \sqrt{1+x^3} dx.$$
 Let $u=1+x^3$. Then $du=3x^2 dx$.
$$x^3=$$

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx = \int 3x^2 x^3 \sqrt{1 + x^3} dx.$$
 Let $u = 1 + x^3$.
Then $du = 3x^2 dx$.
 $x^3 = u - 1$.

Evaluate
$$\int 3x^5\sqrt{1+x^3}\mathrm{d}x = \int 3x^2x^3\sqrt{1+x^3}\mathrm{d}x.$$
 Let $u=1+x^3$. Then $\mathrm{d}u=3x^2\mathrm{d}x.$
$$x^3=u-1.$$

$$\int 3x^2x^3\sqrt{1+x^3}\mathrm{d}x = \int \sqrt{u}$$

Evaluate
$$\int 3x^5 \sqrt{1+x^3} dx = \int 3x^2 x^3 \sqrt{1+x^3} dx.$$
 Let $u=1+x^3$. Then $du=3x^2 dx$.
$$x^3=u-1.$$

$$\int 3x^2 x^3 \sqrt{1+x^3} dx = \int (u-1) \sqrt{u}$$

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx = \int 3x^2 x^3 \sqrt{1 + x^3} dx.$$
 Let $u = 1 + x^3$. Then $du = 3x^2 dx$.
$$x^3 = u - 1.$$

$$\int 3x^2 x^3 \sqrt{1 + x^3} dx = \int (u - 1) \sqrt{u} du$$

Evaluate
$$\int 3x^5 \sqrt{1+x^3} dx = \int 3x^2 x^3 \sqrt{1+x^3} dx$$
.
Let $u = 1 + x^3$.
Then $du = 3x^2 dx$.
 $x^3 = u - 1$.
 $\int 3x^2 x^3 \sqrt{1+x^3} dx = \int (u-1)\sqrt{u} du$
 $= \int (u^{3/2} - u^{1/2}) du$

Evaluate
$$\int 3x^5\sqrt{1+x^3}\mathrm{d}x = \int 3x^2x^3\sqrt{1+x^3}\mathrm{d}x.$$
 Let $u=1+x^3$. Then $\mathrm{d}u=3x^2\mathrm{d}x.$
$$x^3=u-1.$$

$$\int 3x^2x^3\sqrt{1+x^3}\mathrm{d}x = \int (u-1)\sqrt{u}\,\mathrm{d}u$$

$$= \int (u^{3/2}-u^{1/2})\mathrm{d}u$$

$$= \begin{pmatrix} & & \\ & & \end{pmatrix}$$

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx = \int 3x^2 x^3 \sqrt{1 + x^3} dx$$
.
Let $u = 1 + x^3$.
Then $du = 3x^2 dx$.
 $x^3 = u - 1$.
 $\int 3x^2 x^3 \sqrt{1 + x^3} dx = \int (u - 1) \sqrt{u} du$
 $= \int (u^{3/2} - u^{1/2}) du$
 $= \left(\frac{u^{5/2}}{5/2} - \right)$

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx = \int 3x^2 x^3 \sqrt{1 + x^3} dx$$
.
Let $u = 1 + x^3$.
Then $du = 3x^2 dx$.
 $x^3 = u - 1$.
 $\int 3x^2 x^3 \sqrt{1 + x^3} dx = \int (u - 1) \sqrt{u} du$
 $= \int (u^{3/2} - u^{1/2}) du$
 $= \left(\frac{u^{5/2}}{5/2} - u^{1/2}\right)$

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx = \int 3x^2 x^3 \sqrt{1 + x^3} dx$$
.
Let $u = 1 + x^3$.
Then $du = 3x^2 dx$.
 $x^3 = u - 1$.
 $\int 3x^2 x^3 \sqrt{1 + x^3} dx = \int (u - 1) \sqrt{u} du$
 $= \int (u^{3/2} - u^{1/2}) du$
 $= \left(\frac{u^{5/2}}{5/2} - \frac{u^{3/2}}{3/2}\right)$

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx = \int 3x^2 x^3 \sqrt{1 + x^3} dx$$
.
Let $u = 1 + x^3$.
Then $du = 3x^2 dx$.
 $x^3 = u - 1$.

$$\int 3x^2 x^3 \sqrt{1 + x^3} dx = \int (u - 1) \sqrt{u} du$$

$$= \int (u^{3/2} - u^{1/2}) du$$

$$= \left(\frac{u^{5/2}}{5/2} - \frac{u^{3/2}}{3/2}\right) + C$$

Evaluate
$$\int 3x^5\sqrt{1+x^3} dx = \int 3x^2x^3\sqrt{1+x^3} dx$$
.
Let $u = 1+x^3$.
Then $du = 3x^2 dx$.
 $x^3 = u - 1$.

$$\int 3x^2x^3\sqrt{1+x^3} dx = \int (u-1)\sqrt{u} du$$

$$= \int (u^{3/2} - u^{1/2}) du$$

$$= \left(\frac{u^{5/2}}{5/2} - \frac{u^{3/2}}{3/2}\right) + C$$

$$= \frac{2}{5}(1+x^3)^{5/2} - \frac{2}{3}(1+x^3)^{3/2} + C$$
.

Theorem (Integrals of Symmetric Functions)

Suppose f is continuous on [-a, a].

- If f is even (that is, f(-x) = f(x)), then $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$.
- 2 If f is odd (that is, f(-x) = -f(x)), then $\int_{-2}^{a} f(x) dx = 0$.

Since
$$f(x) = x^6 + 1$$
 satisfies $f(-x) = f(x)$, it is even, and so
$$\int_{-2}^{2} (x^6 + 1) dx =$$

Since
$$f(x) = x^6 + 1$$
 satisfies $f(-x) = f(x)$, it is even, and so
$$\int_{-2}^{2} (x^6 + 1) dx = 2 \int_{0}^{2} (x^6 + 1) dx$$

Since
$$f(x) = x^6 + 1$$
 satisfies $f(-x) = f(x)$, it is even, and so
$$\int_{-2}^{2} (x^6 + 1) dx = 2 \int_{0}^{2} (x^6 + 1) dx$$
$$= 2 \left[\frac{1}{7} x^7 + x \right]_{0}^{2}$$

Since
$$f(x) = x^6 + 1$$
 satisfies $f(-x) = f(x)$, it is even, and so
$$\int_{-2}^{2} (x^6 + 1) dx = 2 \int_{0}^{2} (x^6 + 1) dx$$
$$= 2 \left[\frac{1}{7} x^7 + x \right]_{0}^{2}$$
$$= 2 \left(\frac{128}{7} + 2 \right)$$

Since
$$f(x) = x^6 + 1$$
 satisfies $f(-x) = f(x)$, it is even, and so
$$\int_{-2}^{2} (x^6 + 1) dx = 2 \int_{0}^{2} (x^6 + 1) dx$$
$$= 2 \left[\frac{1}{7} x^7 + x \right]_{0}^{2}$$
$$= 2 \left(\frac{128}{7} + 2 \right)$$
$$= \frac{284}{7}.$$

Since $f(x) = (\tan x)/(1 + x^2 + x^4)$ satisfies f(-x) = -f(x), it is odd, and so

$$\int_{-1}^{1} \frac{\tan x}{1 + x^2 + x^4} \mathrm{d}x =$$

Since $f(x) = (\tan x)/(1 + x^2 + x^4)$ satisfies f(-x) = -f(x), it is odd, and so

$$\int_{-1}^{1} \frac{\tan x}{1 + x^2 + x^4} \mathrm{d}x = 0.$$

More About Areas

Suppose two curves, y = f(x) and y = g(x), are given. How do we find the area bounded by those curves between the endpoints x = a and x = b?

 $rectangle \ area = height \cdot width$

rectangle area = height·width

rectangle area = height Δx

rectangle area = $height \cdot \Delta x$

rectangle area = $f(x) \cdot \Delta x$

rectangle area = $f(x) \cdot \Delta x$

rectangles =
$$n = 4$$

A = $\sum_{i=1}^{4} f(x_i) \Delta x$

$$A = \sum_{i=1}^{4} f(x_i) \Delta x$$

rectangle area = $f(x) \cdot \Delta x$

rectangles =
$$n = 8$$

$$A = \sum_{i=1}^{8} f(x_i) \Delta x$$

rectangle area = $f(x) \cdot \Delta x$

rectangles =
$$n = 16$$

$$A = \sum_{i=1}^{16} f(x_i) \Delta x$$

rectangle area = $f(x) \cdot \Delta x$

 $A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$

rectangle area = $f(x) \cdot \Delta x$

 $A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$

rectangle area = $f(x) \cdot \Delta x$

$$A = \int_a^b f(x) dx$$

rectangle area = $f(x) \cdot \Delta x$

$$A = \int_a^b f(x) dx$$

rectangle area = height⋅width

rectangle area = $f(x) \cdot \Delta x$

 $A = \int_a^b f(x) dx$

rectangle area = height⋅width

rectangle area = $f(x) \cdot \Delta x$

$A = \int_a^b f(x) dx$

rectangle area = height Δx

rectangle area = $f(x) \cdot \Delta x$

 $A = \int_a^b f(x) dx$

rectangle area = $height \cdot \Delta x$

rectangle area = $f(x) \cdot \Delta x$

$$A = \int_a^b f(x) dx$$

rectangle area =
$$(f(x) - g(x)) \cdot \Delta x$$

rectangle area = $f(x) \cdot \Delta x$

rectangles =
$$n \to \infty$$

A = $\int_a^b f(x) dx$

rectangle area =
$$(f(x) - g(x)) \cdot \Delta x$$

rectangles =
$$n = 4$$

$$A = \sum_{i=1}^{4} (f(x_i) - g(x_i)) \Delta x$$

rectangle area = $f(x) \cdot \Delta x$

$$A = \int_a^b f(x) dx$$

rectangle area =
$$(f(x) - g(x)) \cdot \Delta x$$

$$\#$$
 rectangles $= n = 8$

$$A = \sum_{i=1}^{8} (f(x_i) - g(x_i)) \Delta x$$

rectangle area = $f(x) \cdot \Delta x$

$$A = \int_a^b f(x) dx$$

rectangle area =
$$(f(x) - g(x)) \cdot \Delta x$$

rectangles =
$$n = 16$$

$$A = \sum_{i=1}^{16} (f(x_i) - g(x_i)) \Delta x$$

rectangle area = $f(x) \cdot \Delta x$

$$A = \int_a^b f(x) dx$$

rectangle area =
$$(f(x) - g(x)) \cdot \Delta x$$

$$A = \int_a^b [f(x) - g(x)] dx$$

Definition (The Area Between Two Curves)

The area between two curves y = f(x) and y = g(x) bounded by the endpoints x = a and x = b is

$$\int_a^b |f(x)-g(x)| \mathrm{d}x.$$

Note that we use the absolute value, because in general we don't know which curve is above the other.

Find the area of the region bounded above by $y = x^2 + 1$, bounded below by y = x, and bounded on its sides by x = 0 and x = 1.

FreeCalc Math 140 Lecture 24 May 7, 2013

Find the area of the region bounded above by $y = x^2 + 1$, bounded below by y = x, and bounded on its sides by x = 0 and x = 1.

Graph the functions.

Find the area of the region bounded above by $y = x^2 + 1$, bounded below by y = x, and bounded on its sides by x = 0 and x = 1.

Graph the functions.

FreeCalc Math 140 Lecture 24 May 7, 2013

Find the area of the region bounded above by $y = x^2 + 1$, bounded below by y = x, and bounded on its sides by x = 0 and x = 1.

Graph the functions.

FreeCalc Math 140 Lecture 24 May 7, 2013

Find the area of the region bounded above by $y = x^2 + 1$, bounded below by y = x, and bounded on its sides by x = 0 and x = 1.

- Graph the functions.
- Identify the region.

FreeCalc Math 140 Lecture 24 May 7, 2013

Find the area of the region bounded above by $y = x^2 + 1$, bounded below by y = x, and bounded on its sides by x = 0 and x = 1.

- Graph the functions.
- Identify the region.

FreeCalc Math 140 Lecture 24 May 7, 2013

- Graph the functions.
- Identify the region.
- Integrate.

- Graph the functions.
- Identify the region.
- Integrate.

$$A = \int_0^1 |(x^2 + 1) - x| dx$$
$$= \int_0^1 (x^2 - x + 1) dx$$

- Graph the functions.
- Identify the region.
- Integrate.

$$A = \int_0^1 |(x^2 + 1) - x| dx$$
$$= \int_0^1 (x^2 - x + 1) dx$$
$$= \left[\frac{x^3}{3} - \frac{x^2}{2} + x \right]_0^1$$

- Graph the functions.
- Identify the region.
- Integrate.

$$A = \int_0^1 |(x^2 + 1) - x| dx$$

$$= \int_0^1 (x^2 - x + 1) dx$$

$$= \left[\frac{x^3}{3} - \frac{x^2}{2} + x \right]_0^1$$

$$= \frac{1}{3} - \frac{1}{2} + 1$$

- Graph the functions.
- Identify the region.
- Integrate.

$$A = \int_0^1 |(x^2 + 1) - x| dx$$

$$= \int_0^1 (x^2 - x + 1) dx$$

$$= \left[\frac{x^3}{3} - \frac{x^2}{2} + x \right]_0^1$$

$$= \frac{1}{3} - \frac{1}{2} + 1 = \frac{5}{6}.$$

Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$.

Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$.

Find the point of intersection.

• Find the point of intersection.

Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$. $x^2 = 2x - x^2$

Find the point of intersection.

Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$. $x^2 = 2x - x^2$ $0 = 2x - 2x^2$

• Find the point of intersection.

Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$. $x^2 = 2x - x^2$ $0 = 2x - 2x^2 = 2x(1 - x)$

Find the point of intersection.

Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$. $x^2 = 2x - x^2$ $0 = 2x - 2x^2 = 2x(1 - x)$ x = 0 or 1.

Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$. $x^2 = 2x - x^2$

$$0 = 2x - 2x^2 = 2x(1-x)$$

x = 0 or 1.

- Find the point of intersection.
- @ Graph the functions.

Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$.

$$x^2 = 2x - x^2$$

$$0 = 2x - 2x^2 = 2x(1-x)$$

$$x = 0 \text{ or } 1.$$

- Find the point of intersection.
- @ Graph the functions.

Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$. $x^2 = 2x - x^2$ $0 = 2x - 2x^2 = 2x(1 - x)$

x = 0 or 1.

- Find the point of intersection.
- @ Graph the functions.

Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$. $x^2 = 2x - x^2$

$$0 = 2x - 2x^2 = 2x(1-x)$$

x = 0 or 1.

- Find the point of intersection.
- @ Graph the functions.
- Identify the region.

Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$. $x^2 = 2x - x^2$

$$0 = 2x - 2x^2 = 2x(1-x)$$

$$0 = 2x - 2x^2 = 2x(1-x)$$

x = 0 or 1.

- Find the point of intersection.
- @ Graph the functions.
- Identify the region.

Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$.

$$x^2 = 2x - x^2$$

$$0 = 2x - 2x^2 = 2x(1-x)$$

$$x = 0 \text{ or } 1.$$

- Find the point of intersection.
- @ Graph the functions.
- Identify the region.
- Integrate.

- Find the point of intersection.
- @ Graph the functions.
- Identify the region.
- Integrate.

Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$. $x^2 = 2x - x^2$ $0 = 2x - 2x^2 = 2x(1 - x)$ x = 0 or 1. $A = \int_0^1 (2x - 2x^2) dx$

- Find the point of intersection.
- @ Graph the functions.
- Identify the region.
- Integrate.

Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$. $x^2 = 2x - x^2$ $0 = 2x - 2x^2 = 2x(1 - x)$ x = 0 or 1. $A = \int_0^1 (2x - 2x^2) dx = 2 \int_0^1 (x - x^2) dx$

- Find the point of intersection.

- Integrate.

parabolas $y = x^2$ and $y = 2x - x^2$. $x^2 = 2x - x^2$ $0 = 2x - 2x^2 = 2x(1-x)$ x = 0 or 1. $A = \int_0^1 (2x - 2x^2) dx = 2 \int_0^1 (x - x^2) dx$

Find the area of the region enclosed by the

- Find the point of intersection.
- @ Graph the functions.
- Identify the region.
- Integrate.

Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$. $x^2 = 2x - x^2$ $0 = 2x - 2x^2 = 2x(1 - x)$ x = 0 or 1.

$$A = \int_0^1 (2x - 2x^2) dx = 2 \int_0^1 (x - x^2) dx$$
$$= 2 \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_0^1 = 2 \left(\frac{1}{2} - \frac{1}{3} \right)$$

- Find the point of intersection.
- @ Graph the functions.
- Identify the region.
- Integrate.

Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$. $x^2 = 2x - x^2$ $0 = 2x - 2x^2 = 2x(1 - x)$ x = 0 or 1

$$A = \int_0^1 (2x - 2x^2) dx = 2 \int_0^1 (x - x^2) dx$$
$$= 2 \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_0^1 = 2 \left(\frac{1}{2} - \frac{1}{3} \right) = \frac{1}{3}.$$

Find the area of the region enclosed by the curves $y = \sin x$, $y = \cos x$, x = 0 and $x = \pi/2$.

Find the area of the region enclosed by the curves $y = \sin x$, $y = \cos x$, x = 0 and $x = \pi/2$.

Find the point of intersection.

Find the area of the region enclosed by the curves $y = \sin x$, $y = \cos x$, x = 0 and $x = \pi/2$. The only point of intersection in the interval $[0, \pi/2]$ is $(\pi/4, 1/\sqrt{2})$.

Find the point of intersection.

- Find the point of intersection.
- Graph the functions.

- Find the point of intersection.
- @ Graph the functions.

- Find the point of intersection.
- @ Graph the functions.

- Find the point of intersection.
- Graph the functions.
- Identify the region.

- Find the point of intersection.
- @ Graph the functions.
- Identify the region.

- Find the point of intersection.
- Graph the functions.
- Identify the region.
- Integrate.

Find the area of the region enclosed by the curves $y = \sin x$, $y = \cos x$, x = 0 and $x = \pi/2$. The only point of intersection in the interval $[0, \pi/2]$ is $(\pi/4, 1/\sqrt{2})$. $A = A_1 + A_2$ $= \int_0^{\pi/4} (\cos x - \sin x) dx + \int_{\pi/4}^{\pi/2} (\sin x - \cos x) dx$

- Find the point of intersection.
- Graph the functions.
- Identify the region.
- Integrate.

$$= \int_0^{\pi/4} (\cos x - \sin x) dx$$

$$+ \int_{\pi/4}^{\pi/2} (\sin x - \cos x) \mathrm{d}x$$

$$= [\sin x + \cos x]_0^{\pi/4} + [-\cos x - \sin x]_{\pi/4}^{\pi/2}$$

- Find the point of intersection.
- @ Graph the functions.
- Identify the region.
- Integrate.

Find the area of the region enclosed by the curves $y = \sin x$, $y = \cos x$, x = 0 and $x = \pi/2$. The only point of intersection in the interval $[0, \pi/2]$ is $(\pi/4, 1/\sqrt{2})$. $A = A_1 + A_2$ $= \int_{2}^{\pi/4} (\cos x - \sin x) \mathrm{d}x$ $+ \int_{\pi/4}^{\pi/2} (\sin x - \cos x) \mathrm{d}x$ $= [\sin x + \cos x]_0^{\pi/4} + [-\cos x - \sin x]_{\pi/4}^{\pi/2}$ $= 2\sqrt{2} - 2$