Math 140 Lecture 25

Greg Maloney

with modifications by T. Milev

University of Massachusetts Boston

May 14, 2013

Outline

Volumes

Volumes

We can use integration to find the volumes of certain solids.

• How do we find the volume of a solid S?

- How do we find the volume of a solid S?
- Let P_x be the plane perpendicular to the x-axis and passing through the point x.
- The intersection of P_x with S is called a cross-section.
- Let A(x) be the area of this cross-section.

- How do we find the volume of a solid S?
- Let P_x be the plane perpendicular to the x-axis and passing through the point x.
- The intersection of P_x with S is called a cross-section.
- Let A(x) be the area of this cross-section.

- How do we find the volume of a solid S?
- Let P_x be the plane perpendicular to the x-axis and passing through the point x.
- The intersection of P_x with S is called a cross-section.
- Let A(x) be the area of this cross-section.

- How do we find the volume of a solid S?
- Let P_x be the plane perpendicular to the x-axis and passing through the point x.
- The intersection of P_x with S is called a cross-section.
- Let A(x) be the area of this cross-section.

- How do we find the volume of a solid S?
- Let P_x be the plane perpendicular to the x-axis and passing through the point x.
- The intersection of P_X with S is called a cross-section.
- Let A(x) be the area of this cross-section.
- Consider the part of S between two planes P_{x_1} and P_{x_2} .

- How do we find the volume of a solid S?
- Let P_x be the plane perpendicular to the x-axis and passing through the point x.
- The intersection of P_x with S is called a cross-section.
- Let A(x) be the area of this cross-section.
- Consider the part of S between two planes P_{x_1} and P_{x_2} .
- Approximate this part of S:
- Pick a sample point x^* between x_1 and x_2 . Use a solid that has the same constant cross-sectional area $A(x^*)$ between x_1 and x_2 .

- How do we find the volume of a solid S?
- Let P_x be the plane perpendicular to the x-axis and passing through the point x.
- The intersection of P_x with S is called a cross-section.
- Let A(x) be the area of this cross-section.
- Consider the part of S between two planes P_{x_1} and P_{x_2} .
- Approximate this part of S:
- Pick a sample point x^* between x_1 and x_2 . Use a solid that has the same constant cross-sectional area $A(x^*)$ between x_1 and x_2 .
- Let Δx be the distance from x_1 to x_2 .

Approx. volume of slab: $A(x^*)\Delta x$

- How do we find the volume of a solid S?
- Let P_x be the plane perpendicular to the x-axis and passing through the point x.
- The intersection of P_x with S is called a cross-section.
- Let A(x) be the area of this cross-section.
- Consider the part of S between two planes P_{x_1} and P_{x_2} .
- Approximate this part of S:
- Pick a sample point x^* between x_1 and x_2 . Use a solid that has the same constant cross-sectional area $A(x^*)$ between x_1 and x_2 .
- Let Δx be the distance from x_1 to x_2 .

Approx. volume of slab: $A(x^*)\Delta x$ Approx. volume of S:

$$V \approx \sum_{i=1}^n A(x_i^*) \Delta x$$

- How do we find the volume of a solid S?
- Let P_x be the plane perpendicular to the x-axis and passing through the point x.
- The intersection of P_x with S is called a cross-section.
- Let A(x) be the area of this cross-section.
- Consider the part of S between two planes P_{x_1} and P_{x_2} .
- Approximate this part of S:
- Pick a sample point x^* between x_1 and x_2 . Use a solid that has the same constant cross-sectional area $A(x^*)$ between x_1 and x_2 .
- Let Δx be the distance from x_1 to x_2 .

Approx. volume of slab: $A(x^*)\Delta x$

Approx. volume of S:

$$V \approx \sum_{i=1}^{n} A(x_i^*) \Delta x$$

Exact volume of S :

$$V = \lim_{n \to \infty} \sum_{i=1}^{n} A(x_i^*) \Delta x$$

- How do we find the volume of a solid S?
- Let P_x be the plane perpendicular to the x-axis and passing through the point x.
- The intersection of P_x with S is called a cross-section.
- Let A(x) be the area of this cross-section.
- Consider the part of S between two planes P_{x_1} and P_{x_2} .
- Approximate this part of S:
- Pick a sample point x* between x₁ and x_2 . Use a solid that has the same constant cross-sectional area $A(x^*)$ between x_1 and x_2 .
- Let Δx be the distance from x_1 to x_2 .

Definition (Volume)

Let S be a solid that lies between x = a and x = b. If the cross-sectional area of S in the plane P_x is a continuous function A(x), then the volume of S is

$$V = \lim_{n \to \infty} \sum_{i=1}^{n} A(x_i^*) \Delta x = \int_{a}^{b} A(x) dx$$

Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

• The cross-sections of this solid are all circles.

Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

- The cross-sections of this solid are all circles.
- The circular cross-section through the point (x,0) has radius \sqrt{x} .

Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

- The cross-sections of this solid are all circles.
- The circular cross-section through the point (x,0) has radius \sqrt{x} .
- The area of the cross-section is A(x) =

Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

- The cross-sections of this solid are all circles.
- The circular cross-section through the point (x,0) has radius \sqrt{x} .
- The area of the cross-section is $A(x) = \pi(\sqrt{x})^2$

Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

- The cross-sections of this solid are all circles.
- The circular cross-section through the point (x,0) has radius \sqrt{x} .
- The area of the cross-section is $A(x) = \pi(\sqrt{x})^2 = \pi x$.

Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

- The cross-sections of this solid are all circles.
- The circular cross-section through the point (x,0) has radius \sqrt{x} .
- The area of the cross-section is $A(x) = \pi(\sqrt{x})^2 = \pi x$.
- The volume of a single approximating section is $A(x)\Delta x = \pi x \ \Delta x$.

Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

- The cross-sections of this solid are all circles.
- The circular cross-section through the point (x,0) has radius \sqrt{x} .
- The area of the cross-section is $A(x) = \pi(\sqrt{x})^2 = \pi x$.
- The volume of a single approximating section is $A(x)\Delta x = \pi x \ \Delta x$.
- The solid lies between 0 and 1, so its volume is

$$V = \int_0^1 A(x) \, \mathrm{d}x$$

Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

- The cross-sections of this solid are all circles.
- The circular cross-section through the point (x,0) has radius \sqrt{x} .
- The area of the cross-section is $A(x) = \pi(\sqrt{x})^2 = \pi x$.
- The volume of a single approximating section is $A(x)\Delta x = \pi x \ \Delta x$.
- The solid lies between 0 and 1, so its volume is

$$V = \int_0^1 A(x) dx = \int_0^1 \pi x dx$$

Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

- The cross-sections of this solid are all circles.
- The circular cross-section through the point (x,0) has radius \sqrt{x} .
- The area of the cross-section is $A(x) = \pi(\sqrt{x})^2 = \pi x$.
- The volume of a single approximating section is $A(x)\Delta x = \pi x \ \Delta x$.
- The solid lies between 0 and 1, so its volume is

$$V = \int_0^1 A(x) dx = \int_0^1 \pi x dx$$
$$= \left[\pi \frac{x^2}{2}\right]_0^1$$

Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

- The cross-sections of this solid are all circles.
- The circular cross-section through the point (x,0) has radius \sqrt{x} .
- The area of the cross-section is $A(x) = \pi(\sqrt{x})^2 = \pi x$.
- The volume of a single approximating section is $A(x)\Delta x = \pi x \ \Delta x$.
- The solid lies between 0 and 1, so its volume is

$$V = \int_0^1 A(x) dx = \int_0^1 \pi x dx$$
$$= \left[\pi \frac{x^2}{2}\right]_0^1 = \frac{\pi}{2}$$

Find the volume of the solid obtained by rotating about the *x*-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1.

Find the volume of the solid obtained by rotating about the *x*-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1.

Find the volume of the solid obtained by rotating about the *x*-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1.

Find the volume of the solid obtained by rotating about the *x*-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1.

Find the volume of the solid obtained by rotating about the *x*-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1.

Find the volume of the solid obtained by rotating about the *x*-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1.

Find the volume of the solid obtained by rotating about the x-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1. The typical cross-section is a washer centered at (x, 0).

Find the volume of the solid obtained by rotating about the x-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1. The typical cross-section is a washer centered at (x, 0).

Area of the inner circle:

Area of the outer circle:

Find the volume of the solid obtained by rotating about the x-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1. The typical cross-section is a washer centered at (x, 0).

Area of the inner circle: πx^2 Area of the outer circle:

Find the volume of the solid obtained by rotating about the x-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1. The typical cross-section is a washer centered at (x, 0).

Area of the inner circle: πx^2 Area of the outer circle:

Find the volume of the solid obtained by rotating about the x-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1. The typical cross-section is a washer centered at (x, 0).

Area of the inner circle: πx^2

Find the volume of the solid obtained by rotating about the x-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1. The typical cross-section is a washer centered at (x, 0).

Area of the inner circle: πx^2

$$V = \int_0^1 \left(\pi (x^2 + 1)^2 - \pi x^2 \right) dx$$

Find the volume of the solid obtained by rotating about the x-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1. The typical cross-section is a washer centered at (x, 0).

Area of the inner circle: πx^2

$$V = \int_0^1 \left(\pi (x^2 + 1)^2 - \pi x^2 \right) dx$$
$$= \pi \int_0^1 \left(x^4 + x^2 + 1 \right) dx$$

Find the volume of the solid obtained by rotating about the x-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1. The typical cross-section is a washer centered at (x, 0).

Area of the inner circle: πx^2

$$V = \int_0^1 \left(\pi (x^2 + 1)^2 - \pi x^2 \right) dx$$
$$= \pi \int_0^1 \left(x^4 + x^2 + 1 \right) dx$$
$$= \pi \left[+ + \right]_0^1$$

Find the volume of the solid obtained by rotating about the x-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1. The typical cross-section is a washer centered at (x, 0).

Area of the inner circle: πx^2 Area of the outer circle: $\pi (x^2 + 1)^2$

$$V = \int_0^1 \left(\pi (x^2 + 1)^2 - \pi x^2 \right) dx$$
$$= \pi \int_0^1 \left(x^4 + x^2 + 1 \right) dx$$
$$= \pi \left[\frac{x^5}{5} + \dots + \dots \right]_0^1$$

Find the volume of the solid obtained by rotating about the x-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1. The typical cross-section is a washer centered at (x, 0).

Area of the inner circle: πx^2

$$V = \int_0^1 \left(\pi (x^2 + 1)^2 - \pi x^2 \right) dx$$
$$= \pi \int_0^1 \left(x^4 + x^2 + 1 \right) dx$$
$$= \pi \left[\frac{x^5}{5} + \dots + \dots \right]_0^1$$

Find the volume of the solid obtained by rotating about the x-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1. The typical cross-section is a washer centered at (x, 0).

Area of the inner circle: πx^2 Area of the outer circle: $\pi (x^2 + 1)^2$

$$V = \int_0^1 \left(\pi (x^2 + 1)^2 - \pi x^2 \right) dx$$
$$= \pi \int_0^1 \left(x^4 + x^2 + 1 \right) dx$$
$$= \pi \left[\frac{x^5}{5} + \frac{x^3}{3} + \right]_0^1$$

Find the volume of the solid obtained by rotating about the x-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1. The typical cross-section is a washer centered at (x, 0).

Area of the inner circle: πx^2

$$V = \int_0^1 \left(\pi (x^2 + 1)^2 - \pi x^2 \right) dx$$
$$= \pi \int_0^1 \left(x^4 + x^2 + \frac{1}{1} \right) dx$$
$$= \pi \left[\frac{x^5}{5} + \frac{x^3}{3} + \right]_0^1$$

Find the volume of the solid obtained by rotating about the x-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1. The typical cross-section is a washer centered at (x, 0).

Area of the inner circle: πx^2

$$V = \int_0^1 \left(\pi (x^2 + 1)^2 - \pi x^2 \right) dx$$
$$= \pi \int_0^1 \left(x^4 + x^2 + 1 \right) dx$$
$$= \pi \left[\frac{x^5}{5} + \frac{x^3}{3} + x \right]_0^1$$

Find the volume of the solid obtained by rotating about the x-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1. The typical cross-section is a washer centered at (x, 0).

Area of the inner circle: πx^2 Area of the outer circle: $\pi (x^2 + 1)^2$

$$V = \int_0^1 \left(\pi (x^2 + 1)^2 - \pi x^2 \right) dx$$

$$= \pi \int_0^1 \left(x^4 + x^2 + 1 \right) dx$$

$$= \pi \left[\frac{x^5}{5} + \frac{x^3}{3} + x \right]_0^1$$

$$= \pi \left(\frac{1}{5} + \frac{1}{3} + 1 \right)$$

Find the volume of the solid obtained by rotating about the x-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1. The typical cross-section is a washer centered at (x, 0).

Area of the inner circle: πx^2

$$V = \int_0^1 \left(\pi (x^2 + 1)^2 - \pi x^2 \right) dx$$

$$= \pi \int_0^1 \left(x^4 + x^2 + 1 \right) dx$$

$$= \pi \left[\frac{x^5}{5} + \frac{x^3}{3} + x \right]_0^1$$

$$= \pi \left(\frac{1}{5} + \frac{1}{3} + 1 \right) = \frac{23}{15} \pi$$

Find the volume of the solid obtained by rotating about the line y = 1 the region bounded by $y = -x^2 + 2x + 1$ and y = 1.

Find the volume of the solid obtained by rotating about the line y = 1 the region bounded by $y = -x^2 + 2x + 1$ and y = 1.

Find the volume of the solid obtained by rotating about the line y = 1 the region bounded by $y = -x^2 + 2x + 1$ and y = 1.

Find the volume of the solid obtained by rotating about the line y = 1 the region bounded by $y = -x^2 + 2x + 1$ and y = 1.

Find the volume of the solid obtained by rotating about the line y = 1 the region bounded by $y = -x^2 + 2x + 1$ and y = 1.

The typical cross-section is a circle centered at (x, 1).

Find the volume of the solid obtained by rotating about the line y = 1 the region bounded by $y = -x^2 + 2x + 1$ and y = 1.

The typical cross-section is a circle centered at (x, 1).

Area of cross-section:

Find the volume of the solid obtained by rotating about the line y = 1 the region bounded by $y = -x^2 + 2x + 1$ and y = 1.

The typical cross-section is a circle centered at (x, 1).

Area of cross-section: $\pi((-x^2+2x+1)-1)^2$

Find the volume of the solid obtained by rotating about the line y = 1 the region bounded by $y = -x^2 + 2x + 1$ and y = 1.

The typical cross-section is a circle centered at (x, 1).

Area of cross-section: $\pi((-x^2+2x+1)-1)^2$

$$V = \int_0^2 \pi \left((-x^2 + 2x + 1) - 1 \right)^2 dx$$

Find the volume of the solid obtained by rotating about the line y = 1 the region bounded by $y = -x^2 + 2x + 1$ and y = 1.

The typical cross-section is a circle centered at (x, 1).

Area of cross-section: $\pi((-x^2+2x+1)-1)^2$

$$V = \int_0^2 \pi \left((-x^2 + 2x + 1) - 1 \right)^2 dx$$
$$= \pi \int_0^2 \left(x^4 - 4x^3 + 4x^2 \right) dx$$

Find the volume of the solid obtained by rotating about the line y = 1 the region bounded by $y = -x^2 + 2x + 1$ and y = 1.

The typical cross-section is a circle centered at (x, 1).

Area of cross-section: $\pi((-x^2+2x+1)-1)^2$

$$V = \int_0^2 \pi \left((-x^2 + 2x + 1) - 1 \right)^2 dx$$

$$= \pi \int_0^2 \left(x^4 - 4x^3 + 4x^2 \right) dx$$

$$= \pi \left[- + \right]_0^2$$

Find the volume of the solid obtained by rotating about the line y = 1 the region bounded by $y = -x^2 + 2x + 1$ and y = 1.

The typical cross-section is a circle centered at (x, 1).

Area of cross-section: $\pi((-x^2+2x+1)-1)^2$

$$V = \int_0^2 \pi \left((-x^2 + 2x + 1) - 1 \right)^2 dx$$

$$= \pi \int_0^2 \left(x^4 - 4x^3 + 4x^2 \right) dx$$

$$= \pi \left[\frac{x^5}{5} - + \right]_0^2$$

Find the volume of the solid obtained by rotating about the line y = 1 the region bounded by $y = -x^2 + 2x + 1$ and y = 1.

The typical cross-section is a circle centered at (x, 1).

Area of cross-section: $\pi((-x^2+2x+1)-1)^2$

$$V = \int_0^2 \pi \left((-x^2 + 2x + 1) - 1 \right)^2 dx$$

$$= \pi \int_0^2 \left(x^4 - 4x^3 + 4x^2 \right) dx$$

$$= \pi \left[\frac{x^5}{5} - + \right]_0^2$$

Find the volume of the solid obtained by rotating about the line y = 1 the region bounded by $y = -x^2 + 2x + 1$ and y = 1.

The typical cross-section is a circle centered at (x, 1).

Area of cross-section: $\pi((-x^2+2x+1)-1)^2$

$$V = \int_0^2 \pi \left((-x^2 + 2x + 1) - 1 \right)^2 dx$$

$$= \pi \int_0^2 \left(x^4 - 4x^3 + 4x^2 \right) dx$$

$$= \pi \left[\frac{x^5}{5} - x^4 + \right]_0^2$$

Find the volume of the solid obtained by rotating about the line y = 1 the region bounded by $y = -x^2 + 2x + 1$ and y = 1.

The typical cross-section is a circle centered at (x, 1).

Area of cross-section: $\pi((-x^2+2x+1)-1)^2$

$$V = \int_0^2 \pi \left((-x^2 + 2x + 1) - 1 \right)^2 dx$$

$$= \pi \int_0^2 \left(x^4 - 4x^3 + 4x^2 \right) dx$$

$$= \pi \left[\frac{x^5}{5} - x^4 + \right]_0^2$$

Find the volume of the solid obtained by rotating about the line y = 1 the region bounded by $y = -x^2 + 2x + 1$ and y = 1.

The typical cross-section is a circle centered at (x, 1).

Area of cross-section: $\pi((-x^2+2x+1)-1)^2$

$$V = \int_0^2 \pi \left((-x^2 + 2x + 1) - 1 \right)^2 dx$$
$$= \pi \int_0^2 \left(x^4 - 4x^3 + 4x^2 \right) dx$$
$$= \pi \left[\frac{x^5}{5} - x^4 + \frac{4x^3}{3} \right]_0^2$$

Find the volume of the solid obtained by rotating about the line y = 1 the region bounded by $y = -x^2 + 2x + 1$ and y = 1.

The typical cross-section is a circle centered at (x, 1).

Area of cross-section: $\pi((-x^2+2x+1)-1)^2$

$$V = \int_0^2 \pi \left((-x^2 + 2x + 1) - 1 \right)^2 dx$$

$$= \pi \int_0^2 \left(x^4 - 4x^3 + 4x^2 \right) dx$$

$$= \pi \left[\frac{x^5}{5} - x^4 + \frac{4x^3}{3} \right]_0^2$$

$$= \pi \left(\frac{32}{5} - 16 + \frac{32}{3} \right)$$

Find the volume of the solid obtained by rotating about the line y = 1 the region bounded by $y = -x^2 + 2x + 1$ and y = 1.

The typical cross-section is a circle centered at (x, 1).

Area of cross-section: $\pi((-x^2+2x+1)-1)^2$

$$V = \int_0^2 \pi \left((-x^2 + 2x + 1) - 1 \right)^2 dx$$

$$= \pi \int_0^2 \left(x^4 - 4x^3 + 4x^2 \right) dx$$

$$= \pi \left[\frac{x^5}{5} - x^4 + \frac{4x^3}{3} \right]_0^2$$

$$= \pi \left(\frac{32}{5} - 16 + \frac{32}{3} \right) = \frac{16}{15} \pi$$