Review problems Final Math 140

Instructors: S. Cai, G. Cunningham, J. Greenough A. Leisinger, T. Milev

Problem 1 Define horizontal and vertical asymptote.

Problem 2 Compute the horizontal and vertical asymptotes of

$$f(x) = \frac{x_{5} + x + 1}{-x_{5} - 3x + 4}$$

$$f(x) = \frac{x_{5} + x + 1}{x_{5} - 3x + 4}$$

$$f(x) = \frac{x_{5} + x + 1}{x_{5} - 3x + 4}$$

$$f(x) = \frac{x_{5} + x + 1}{x_{5} - 3x + 4}$$

$$f(x) = \frac{x_{5} + x + 1}{x_{5} - 3x + 4}$$

$$f(x) = \frac{x_{5} + x + 1}{x_{5} - 3x + 4}$$

$$f(x) = \frac{x_{5} + x + 1}{x_{5} - 3x + 4}$$

$$f(x) = \frac{x_{5} + x + 1}{x_{5} - 3x + 4}$$

$$f(x) = \frac{x_{5} + x + 1}{x_{5} - 3x + 4}$$

$$f(x) = \frac{x_{5} + x + 1}{x_{5} - 3x + 4}$$

$$f(x) = \frac{x_{5} + x + 1}{x_{5} - 3x + 4}$$

$$f(x) = \frac{x_{5} + x + 1}{x_{5} - 3x + 4}$$

$$f(x) = \frac{x_{5} + x + 1}{x_{5} - 3x + 4}$$

$$f(x) = \frac{x_{5} + x + 1}{x_{5} - 3x + 4}$$

$$f(x) = \frac{x_{5} + x + 1}{x_{5} - 3x + 4}$$

Problem 3 Define derivative.

Problem 4 Find the limit

1.
$$\lim_{h \to 0} \frac{\sin^2(x+h) - \sin^2(x)}{h}$$

2.
$$\lim_{h \to 0} \frac{\frac{1}{(x+h)^3} - \frac{1}{x^3}}{h}, \text{ where } x \neq 0.$$

$$\therefore x \cos x \operatorname{uis} \zeta \therefore \text{Jensure}$$

$$\therefore \frac{\pi x}{\xi^2} \therefore \text{Jensure}$$

Problem 5 Find the derivative.

x

Problem 6 Consider the curve given by the equation $x^3 + x^2y^2 + 2y^3 = 4$.

- Use implicit differentiation to express $\frac{dy}{dx}$ via y and x on the curve.
- Find the equation of the tangent line to the curve at the point (x, y) = (1, 1).

Problem 7 State the fundamental theorem of Calculus (both parts).

Problem 8 Compute the derivative.

Problem 9 Compute the integral

1.
$$\int_{-1}^{1} \frac{x^3}{1+x^2} dx$$
 2. $\int_{-2}^{2} \frac{x^5}{1+x^2} dx$

Problem 10 Find intervals of increasing, decreasing, maxima, minima (local and absolute if those exist), concavity, inflection points. Finally, plot the function roughly by hand. Compare your answer with the output of a graphic calculator (you may use an online graphic calculator as well).

1.
$$f(x) = x^4 - 3x^3 + 2$$
.
2. $f(x) = x^4 - 2x^3 - 3$.

Problem 11 A cone-shaped drinking cup is made from a circular piece of paper of radius r by cutting out a sector and

joining the edges OA and OB. Find the maximum capacity of such a cup.

Problem 12 The minute hand on a watch is 0.5cm long and the hour hand is 0.25cm long. How fast is the distance between the tips of the hands changing at 2 o'clock?

A

B

Problem 13 Define the linearization of a function at a point.

- Problem 14 Explain the difference between definite integral and indefinite integral.
- Problem 15 Define Riemann sum. Define definite integral. Give an example of a Riemann sum.
- **Problem 16** State Rolle's theorem. Use Rolle's theorem to prove that $x^3 + x^2 + 5x 4$ has only one real root.
- **Problem 17** Consider the parabola $y = 1 x^2$.
 - 1. Find the area locked between the parabola and the x axis.
 - 2. Find the volume of the solid of revolution obtained by rotating the parabola around the x axis.