Homework 8 ## **Problem 1: Phase Plane Analysis in MATLAB** Write your own code for performing phase plane analysis. Hand in the code. ## **Problem 2: Reactor Model** The model describes a reactor where A is converted to B. The mathematical description of the model consists of two differential equations, which represent the dynamic component (C_A) as well as temperature (T) balance: $$\frac{dC_A}{dt} = \frac{q}{V} \left(C_{A,f} - C_A \right) - k_0 \exp\left(-\frac{E}{RT} \right) C_A \tag{1}$$ $$\frac{dT}{dt} = \frac{q}{V} \left(T_F - T \right) - \frac{\Delta H}{\rho C_p} k_0 \exp \left(-\frac{E}{RT} \right) C_A + \frac{UA}{V \rho C_p} \left(T_C - T \right)$$ (2) The parameters for the process as well as the nominal operating conditions are given in the following table: | Variable | Value | Variable | Value | |-----------|--|-----------------|-------------------------------| | q | $0.1667E-2 \text{ m}^3 \text{ s}^{-1}$ | E/R | 8750 K | | $C_{A,f}$ | 1000 mol m ⁻³ | k_0 | 1.2 E9 s ⁻¹ | | T_f | 350 K | UA | 8.333E2 J (s K) ⁻¹ | | V | 0.1 m ³ | $T_C^{nominal}$ | 300 K | | ρ | 1000 kg m ⁻³ | $C_A^{nominal}$ | ??? mol m ⁻³ | | C_P | 239 J (kg K) ⁻¹ | $T^{nominal}$ | ??? K | | ΔН | -5E4 J mol ⁻¹ | | | - a) For the nominal value of the input, $T_C^{nominal}$, determine the equilibrium point(s) of the system. - b) Simulate the system for slight perturbations around the equilibrium points (by choosing initial conditions which are slightly different from the equilibrium points). Plot a few representative cases (if possible combine several simulations in the same plot). - c) Perform phase plane analysis of the system. Make sure that your analysis includes the equilibrium points. ## **Problem 3: Phase Plane Analysis** For each of the following systems: - 1) Mathematically determine the equilibrium points. - 2) Plot the phase plane to include some of the equilibrium points. a) $$\frac{d^2x}{dt^2} + (x^2 - 1)\frac{dx}{dt} + x = 0$$, with $x_1 = x$, $x_2 = dx/dt$ b) $$\frac{dx}{dt} = \sin(x+y)$$ $$\frac{dy}{dt} = \cos(xy)$$