Table 12.1 presents the PID controller tuning relations for the parallel form that were derived by Chien and Fruehauf (1990) for common types of process models. The IMC filter f was selected according to Eq. 12-21 with r = 1 for first-order and second-order models. For models with integrating elements, the following expression was employed:

$$f = \frac{(2\tau_c - C)s + 1}{(\tau_c s + 1)^2}$$
 where $C = \frac{d\widetilde{G}_+}{ds}\Big|_{s=0}$ (12-32)

Table 12.1 IMC-Based PID Controller Settings for $G_c(s)$ (Chien and Fruehauf, 1990)

Case	Model	K_cK	τ,	τ_D
A	$\frac{K}{\tau s + 1}$	$\frac{\tau}{\tau_c}$	τ	-
В	$\frac{K}{(\tau_1 s + 1)(\tau_2 s + 1)}$	$\frac{\tau_1 + \tau_2}{\tau_c}$	$\tau_1 + \tau_2$	$\frac{\tau_1\tau_2}{\tau_1+\tau_2}$
С	$\frac{K}{\tau^2 s^2 + 2\zeta \tau s + 1}$	$\frac{2\zeta\tau}{\tau_c}$	2ζτ	$\frac{\tau}{2\zeta}$
D	$\frac{K(-\beta s + 1)}{\tau^2 s^2 + 2\zeta \tau s + 1}, \ \beta > 0$	$\frac{2\zeta\tau}{\tau_c + \beta}$	2ζτ	$\frac{\tau}{2\zeta}$
E	$\frac{K}{s}$	$\frac{2}{\tau_c}$	$2\tau_c$	_
F	$\frac{K}{s(\tau s+1)}$	$\frac{2\tau_c + \tau}{\tau_c^2}$	$2\tau_c + \tau$	$\frac{2\tau_c\tau}{2\tau_c+\tau}$
G	$\frac{Ke^{-\theta s}}{\tau s + 1}$	$\frac{\tau}{\tau_c + \theta}$	τ.	-
Н	$\frac{Ke^{-\theta s}}{\tau s + 1}$	$\frac{\tau + \frac{\theta}{2}}{\tau_c + \frac{\theta}{2}}$	$\tau + \frac{\theta}{2}$	$\frac{\tau\theta}{2\tau+\theta}$
I	$\frac{K(\tau_3s+1)e^{-\theta s}}{(\tau_1s+1)(\tau_2s+1)}$	$\frac{\tau_1 + \tau_2 - \tau_3}{\tau_c + \theta}$	$\tau_1 + \tau_2 - \tau_3$	$\frac{\tau_1\tau_2 - (\tau_1 + \tau_2 - \tau_3)\tau_3}{\tau_1 + \tau_2 - \tau_3}$
J	$\frac{K(\tau_3 s + 1)e^{-\theta s}}{\tau^2 s^2 + 2\zeta \tau s + 1}$	$\frac{2\zeta\tau-\tau_3}{\tau_c+\theta}$	$2\zeta\tau-\tau_3$	$\frac{\tau^2-(2\zeta\tau-\tau_3)\tau_3}{2\zeta\tau-\tau_3}$
К	$\frac{K(-\tau_3 s + 1)e^{-\theta s}}{(\tau_1 s + 1)(\tau_2 s + 1)}$	$\frac{\tau_1+\tau_2+\frac{\tau_3\theta}{\tau_c+\tau_3+\theta}}{\tau_c+\tau_3+\theta}$	$\tau_1+\tau_2+\frac{\tau_3\theta}{\tau_c+\tau_3+\theta}$	$\frac{\tau_3\theta}{\tau_c+\tau_3+\theta}+\frac{\tau_1\tau_2}{\tau_1+\tau_2+\frac{\tau_3\theta}{\tau_c+\tau_3+\theta}}$
L	$\frac{K(-\tau_3 s + 1)e^{-\theta s}}{\tau^2 s^2 + 2\zeta \tau s + 1}$	$\frac{2\zeta\tau + \frac{\tau_3\theta}{\tau_c + \tau_3 + \theta}}{\tau_c + \tau_e + \theta}$	$2\zeta\tau+\frac{\tau_3\theta}{\tau_c+\tau_3+\theta}$	$\frac{\tau_3\theta}{\tau_c+\tau_3+\theta}+\frac{\tau^2}{2\zeta\tau+\frac{\tau_3\theta}{\tau_c+\tau_3+\theta}}$
M	$\frac{Ke^{-\theta s}}{s}$	$\frac{2\tau_c + \theta}{(\tau_c + \theta)^2}$	$2\tau_c + \theta$	_
N	$\frac{Ke^{-\theta s}}{s}$	$\frac{2\tau_c + \theta}{\left(\tau_c + \frac{\theta}{2}\right)^2}$	$2\tau_c + \theta$	$\frac{\tau_c\theta + \frac{\theta^2}{4}}{2\tau_c + \theta}$
0	$\frac{Ke^{-its}}{s(\tau s+1)}$	$\frac{2\tau_c + \tau + \theta}{(\tau_c + \theta)^2}$	$2\tau_c + \tau + \theta$	$\frac{(2\tau_c + \theta)\tau}{2\tau_c + \tau + \theta}$

EXA?

SOLL