Clustering Algorithms: A Quick Overview of k-means, k-median, and k-medoids

V.S. Subrahmanian

Fall 2013

What is Clustering?

- You have a set S of vectors in an *n*-dimensional space.
- You have an integer k > 0.
- You want to split S into k buckets such that the "intra-bucket" distance is small, i.e. items within a bucket are close to each other according to some distance measure.

Clustering Approaches

- Clustering approaches vary depending upon what distance metric is used, e.g.
 - Euclidean distance vs.
 - Manhattan distance.
- Well known clustering methods include:
 - *K*-means
 - *K*-median
 - K-medoids (Partitioning around medoids PAM)

K-Means

Suppose we split S into k buckets S₁,..,S_k such that:

- Each bucket S_i has a center c_i ;

$$-Cost(S_1,...,S_k) = \sum_{i=1}^{k} \sum_{x \text{ in } S_i} (x - c_i)^2$$

- We want to split S into k buckets S₁,...,S_k such that the cost is minimized.
- Problem is NP-hard.
- In practice, a heuristic algorithm is used.

K-Means Heuristic Algorithm

- 1. Split **S** into an initial set of k buckets $S_1, ..., S_k$.
- 2. Compute the mean m_i of each cluster.
- 3. For each element s ϵ S
 - Find the bucket S_i such that $|m_i s|^2$ is minimal.
 - Put *s* in that bucket.
- 4. Repeat steps (2) and (3) till no change occurs.

K-Median Heuristic Algorithm

- 1. Split **S** into an initial set of k buckets $S_1, ..., S_k$.
- 2. Compute the median m_i of each cluster.
- 3. For each element *s* ε **S**
 - Find the bucket S_i such that $|m_i s|$ is minimal.
 - Put *s* in that bucket.
- 4. Repeat steps (2) and (3) till no change occurs.

- **S** = { 1,2,3,4,5,11,12,13,14,16 }
- *k* = 2.
- Initially, we choose a random partition.

$$S_1 = \{1, 2, 3, 5, 12\}$$

 $S_2 = \{4, 11, 13, 14, 16\}$

• Find the means of each bucket.

• Consider each element and move it to the bucket whose mean it is closer to.

S₁ = {1,2,3,5,4}; S₂ = {12,11,13,14,16};

• Consider each element and move it to the bucket whose mean it is closer to.

S₁ = {1,2,3,5,4}; S₂ = {12,11,13,14,16};

First iteration of the loop is finished.

Recompute means

S₁ = {1,2,3,5,4}; m1 = 3 S₂ = {12,11,13,14,16}; m2 = 13

 Move elements to buckets whose centers it is "closest" to.

> S₁ = {1,2,3,5,4}; m1 = 3 S₂ = {12,11,13,14,16}; m2 = 13

> > No change occurs. Done !

In-class exercise

- K-means in 2-dimensions
- S = { (1,2), (1,3), (2,3), (1,1), (7,8), (7,7), (6,8), (8,7) }

k-medians in one dimension

- **S** = { 1,2,3,4,5,11,12,13,14,16 }
- *k* = 2.

 $S_1 = \{1, 2, 3, 5, 12\}$ $S_2 = \{4, 11, 13, 14, 16\}$

Pick an initial partition

k-medians in one dimension

- **S** = { 1,2,3,4,5,11,12,13,14,16 }
- *k* = 2.

S₁ = {1,2,3,5,12}; m1= 3 S₂ = {4,11,13,14,16}; m2= 13

Find medians of each partition

k-medians in one dimension

- **S** = { 1,2,3,4,5,11,12,13,14,16 }
- *k* = 2.

S₁ = {1,2,3,5,12}; m1= 3 S₂ = {4,11,13,14,16}; m2= 13

Move elements s to bucket whose median is closest to s

In-class Exercise: k-medians in one dimension

- **S** = { 1,2,3,4,5,11,12,13,14,16 }
- *k* = 2.

S₁ = {1,2,3,5,4}; m1= 3 S₂ = {12,11,13,14,16}; m2= 13

End of first iteration

In-class Exercise: k-medians in one dimension

- **S** = { 1,2,3,4,5,11,12,13,14,16 }
- *k* = 2.

S₁ = {1,2,3,5,4}; m1= 3 S₂ = {12,11,13,14,16}; m2= 13

No change at the end of the 2nd iteration. Done!

In-class exercise

- K-medians in 2-dimensions
- S = { (1,2), (1,3), (2,3), (1,1), (7,8), (7,7), (6,8), (8,7) }

K-Medoid Heuristic Algorithm

- 1. Split **S** into an initial set of k buckets $S_1, ..., S_k$.
- 2. Compute the "medoid" m_i of each bucket S_i . This is the element m_i contained inside bucket S_i s.t. $\sum_{s \text{ in } S_i} d(m_i, s)$ is minimized.
- 3. For each element s ϵ S
 - Find the bucket S_i such that $d(m_i, s)$ is minimal.
 - Put s in that bucket.
- 4. Repeat steps (2) and (3) till no change occurs.

Medoid May Differ from Median

- Let $S = \{1, 2, 3, 20, 100\}$.
- Median is 3, but medoid is 20. Why?

m	$\sum_{s \text{ in } S_i} d(m_i, s)$
1	10167
2	9930
3	9703
20	7374

In-class Exercise: k-medoids in one dimension

- $\mathbf{S} = \{ 1, 2, 3, 4, 5, 11, 12, 13, 14, 16 \}$
- *k* = 2.

In-class exercise

- K-medoids in 2-dimensions
- S = { (1,2), (1,3), (2,3), (1,1), (7,8), (7,7), (6,8), (8,7) }