
© 2013 V.S. Subrahmanian 1

Knapsack Problem Notes

V.S. Subrahmanian

University of Maryland

© 2013 V.S. Subrahmanian 2

Knapsack Problem

• You have a knapsack that has capacity (weight) C.

• You have several items I1,…,In.

• Each item Ij has a weight wj and a benefit bj.

• You want to place a certain number of copies of

each item Ij in the knapsack so that:

– The knapsack weight capacity is not exceeded and

– The total benefit is maximal.

© 2013 V.S. Subrahmanian 3

Example

Item Weight Benefit

A 2 60

B 3 75

C 4 90

Capacity = 5

© 2013 V.S. Subrahmanian 4

Key question

• Suppose f(w) represents the maximal

possible benefit of a knapsack with weight

w.

• We want to find (in the example) f(5).

• Is there anything we can say about f(w) for

arbitrary w?

© 2013 V.S. Subrahmanian 5

Key observation

• To fill a knapsack with items of weight w, we

must have added items into the knapsack in some

order.

• Suppose the last such item was Ii with weight wi

and benefit bi.

• Consider the knapsack with weight (w- wi).

Clearly, we chose to add Ii to this knapsack

because of all items with weight wi or less, Ii had

the max benefit bi.

© 2013 V.S. Subrahmanian 6

Key observation

• Thus, f(w) = MAX { bj + f(w-wj) | Ij is an

item}.

• This gives rise to an immediate recursive

algorithm to determine how to fill a

knapsack.

© 2013 V.S. Subrahmanian 7

Example

Item Weight Benefit

A 2 60

B 3 75

C 4 90

© 2013 V.S. Subrahmanian 8

f(0), f(1)

• f(0) = 0. Why? The knapsack with capacity

0 can have nothing in it.

• f(1) = 0. There is no item with weight 1.

© 2013 V.S. Subrahmanian 9

f(2)

• f(2) = 60. There is only one item with

weight 60.

• Choose A.

© 2013 V.S. Subrahmanian 10

f(3)

• f(3) = MAX { bj + f(w-wj) | Ij is an item}.

= MAX { 60+f(3-2), 75 + f(3-3)}

= MAX { 60 + 0, 75 + 0 }

= 75.

Choose B.

© 2013 V.S. Subrahmanian 11

f(4)

• f(4) = MAX { bj + f(w-wj) | Ij is an item}.

= MAX { 60 + f(4-2), 75 + f(4-3), 90+f(4-4)}

= MAX { 60 + 60, 75 + f(1), 90 + f(0)}

= MAX { 120, 75, 90}

=120.

Choose A.

© 2013 V.S. Subrahmanian 12

f(5)

• f(5) = MAX { bj + f(w-wj) | Ij is an item}.

= MAX { 60 + f(5-2), 75 + f(5-3), 90+f(5-4)}

= MAX { 60 + f(3), 75 + f(2), 90 + f(1)}

= MAX { 60 + 75, 75 + 60, 90+0}

= 135.

Choose A or B.

© 2013 V.S. Subrahmanian 13

Result

• Optimal knapsack weight is 135.

• Two possible optimal solutions:

– Choose A during computation of f(5). Choose

B in computation of f(3).

– Choose B during computation of f(5). Choose

A in computation of f(2).

• Both solutions coincide. Take A and B.

© 2013 V.S. Subrahmanian 14

Another example

• Knapsack of capacity 50.

• 3 items

– Item 1 has weight 10, benefit 60

– Item 2 has weight 20,benefit 100

– Item 3 has weight 30, benefit 120.

© 2013 V.S. Subrahmanian 15

f(0),..,f(9)

• All have value 0.

© 2013 V.S. Subrahmanian 16

f(10),..,f(19)

• All have value 60.

• Choose Item 1.

© 2013 V.S. Subrahmanian 17

f(20),..,f(29)

• F(20) = MAX { 60 + f(10), 100 + f(0) }

= MAX { 60+60, 100+0}

=120.

Choose Item 1.

© 2013 V.S. Subrahmanian 18

f(30),…,f(39)

• f(30) = MAX { 60 + f(20), 100 + f(10), 120

+ f(0) }

= MAX { 60 + 120, 100+60, 120+0}

= 180

Choose item 1.

© 2013 V.S. Subrahmanian 19

f(40),…,f(49)

• F(40) = MAX { 60 + f(30), 100 + f(20), 120

+ f(10)}

= MAX { 60 + 180, 100+120, 120 + 60}

= 240.

Choose item 1.

© 2013 V.S. Subrahmanian 20

f(50)

• f(50) = MAX { 60 + f(40), 100 + f(30), 120

+ f(20) }

= MAX { 60 + 240, 100+180, 120 + 120}

= 300.

Choose item 1.

© 2013 V.S. Subrahmanian 21

Knapsack Problem Variants

• 0/1 Knapsack problem: Similar to the

knapsack problem except that for each item,

only 1 copy is available (not an unlimited

number as we have been assuming so far).

• Fractional knapsack problem: You can take

a fractional number of items. Has the same

constraint as 0/1 knapsack. Can solve using

a greedy algorithm.

0/1 Knapsack Problem

• [Credit: next few slides use notation from

Wikipedia]

• Assume all the objects are ordered in some

order O1,..,On.

• Let m(i,w) denote the best value we can get

for a knapsack of weight w with only items

selected from the first i objects.

© 2013 V.S. Subrahmanian 22

“Initialization” Steps

• m(0,w) = 0. If we can select nothing, then

the value we get is 0.

• m(i,0) = 0. If the total weight allowed is

zero, then we can put nothing in the

knapsack and so get 0 benefit.

© 2013 V.S. Subrahmanian 23

“Recursive” Steps

• m(i,w) = m(i-1,w) if wi > w. If the new item

(item Oi) has a weight that exceeds the

weight limit, then the best solution you have

is the solution you had before.

© 2013 V.S. Subrahmanian 24

“Recursive” Steps

• m(i,w) = MAX(m(i-1,w),

 m(i-1,w-wi)+bi)

 if wi ≤ w.

• When the i’th element’s weight is less than

w, then there are two possibilities:

– Oi is not in the knapsack [case 1]

– Oi is in the knapsack [case 2]

© 2013 V.S. Subrahmanian 25

“Recursive” Step: Case 1

• m(i,w) = MAX(m(i-1,w),

 m(i-1,w-wi)+bi)

 if wi ≤ w.

• Oi is not in the knapsack [red case]

• If it is not in the knapsack, then all elements

in it are from the first (i-1) elements, so

their best benefit is m(i-1,w).

© 2013 V.S. Subrahmanian 26

“Recursive” Step: Case 2

• m(i,w) = MAX(m(i-1,w),

 m(i-1,w-wi)+bi)

 if wi ≤ w.

• Oi is in the knapsack [green case]
• If it is in the knapsack, then it occupies wi weight. This

means there is (w-wi) weight left in the knapsack which

must be filled with the first (i-1) elements.

• That yields a benefit of m(i-1,w-wi)+bi

© 2013 V.S. Subrahmanian
27

0/1 Knapsack Problem

• The above leads to an immediate recursive

algorithm for the 0/1 knapsack problem.

• Given objects O1,..,On, and a weight bound

W, just write the natural recursive algorithm

using the definition.

© 2013 V.S. Subrahmanian 28

0/1 Knapsack Iterative Algorithm

with n objects and weight w.
Set m(0,w’) = 0 for all w’ ≤ w.

Set m(i,0) = 0 for all i=1,..,n.

For i=1 to n do

 For w’ = 0 to w do

 if wi ≤ w then (* item Oi could be in the solution *)

 if bi + m(i-1,w- wi) > m(i-1,w) then

 m(i,w) = bi + m(i-1,w- wi)

 else m(i.w) = m(i-1,w).

Complexity is O(n*w).
© 2013 V.S. Subrahmanian 29

Means adding

Oi to solution

is best

Example

• 6 Objects O1,..,On. W=35.

• Weights and benefits are as shown in the

table below.

© 2013 V.S. Subrahmanian 30

Obj O1 O2 O3 O4 O5 O6

Weight 5 10 20 15 10 20

Benefit 1 5 8 10 20 25

Initialization

• m(0,w’)=0 for all w’ < w.

• M(i,o) = 0 for all i=1,..,n.

© 2013 V.S. Subrahmanian 31

Obj O1 O2 O3 O4 O5 O6

Weight 5 10 20 15 10 20

Benefit 1 5 8 10 20 25

Processing O1

• m(0,w’)=0 for all w’ < w.

• M(i,o) = 0 for all i=1,..,n.

• Pick O1.

• m(1,w) =1 by putting O1 in the knapsack.

© 2013 V.S. Subrahmanian 32

Obj O1 O2 O3 O4 O5 O6

Weight 5 10 20 15 10 20

Benefit 1 5 8 10 20 25

Processing O2

• m(0,w’)=0 for all w’ < w.

• M(i,o) = 0 for all i=1,..,n.

• m(1,w)=1 by putting O1 in the knapsack.

• Add O2 to the knapsack.

• m(2,w)=6.

© 2013 V.S. Subrahmanian 33

Obj O1 O2 O3 O4 O5 O6

Weight 5 10 20 15 10 20

Benefit 1 5 8 10 20 25

Processing O3

• m(0,w’)=0 for all w’ < w.

• M(i,o) = 0 for all i=1,..,n.

• m(1,w)=1. m(2,w)=6. {O1,O2} are in.

• m(3,w)=8+5=13. Put {O2,O3} in knapsack.

© 2013 V.S. Subrahmanian 34

Obj O1 O2 O3 O4 O5 O6

Weight 5 10 20 15 10 20

Benefit 1 5 8 10 20 25

Processing O4

• m(0,w’)=0 for all w’ < w.

• m(i,o) = 0 for all i=1,..,n.

• m(1,w)=1. m(2,w)=6.

• m(3,w)=8+5=13.

• m(4,w) = 10 + m(3,35-15) = 10 + 8 =18. Put

{O3,O4} in knapsack.

© 2013 V.S. Subrahmanian 35

Obj O1 O2 O3 O4 O5 O6

Weight 5 10 20 15 10 20

Benefit 1 5 8 10 20 25

Processing O5

• m(0,w’)=0 for all w’ < w.

• m(i,o) = 0 for all i=1,..,n.

• m(1,w)=1. m(2,w)=6.

• m(3,w)=8+5=13.

• m(4,w) = 10 + m(3,35-15) = 10 + 8 =18. Put {O3,O4} in knapsack.

• m(5,w) = 20 + m(35-10) = 20 + m(4,25) = 20+15 = 35. Put

{O5,O2,O4} in knapsack.

© 2013 V.S. Subrahmanian 36

Obj O1 O2 O3 O4 O5 O6

Weight 5 10 20 15 10 20

Benefit 1 5 8 10 20 25

Processing O6

• m(0,w’)=0 for all w’ < w.

• m(i,o) = 0 for all i=1,..,n.

• m(1,w)=1. m(2,w)=6.

• m(3,w)=8+5=13.

• m(4,w) = 10 + m(3,35-15) = 10 + 8 =18. Put {O3,O4} in knapsack.

• m(5,w) = 20 + m(35-10) = 20 + m(4,25) = 20+15 = 35. Put

{O5,O2,O4} in knapsack.

• M(6,w) = 25 + m(5,35-20) = 25 + m(5,15) = 25+25 = 50. Put

{O6,O5,O2} in the knapsack. DONE/

© 2013 V.S. Subrahmanian 37

Obj O1 O2 O3 O4 O5 O6

Weight 5 10 20 15 10 20

Benefit 1 5 8 10 20 25

Error here.

Refer to 01knapsack_revisited

In-class exercise

• 6 Objects O1,..,O6. W=10.

• Weights and benefits are as shown in the

table below.

© 2013 V.S. Subrahmanian 38

Obj O1 O2 O3 O4 O5 O6

Weight 2 1 4 2 3 5

Benefit 3 4 2 5 7 11

