
Centrality measures in graphs or
social networks

V.S. Subrahmanian

University of Maryland

vs@cs.umd.edu

Copyright (C) 2012, V.S. Subrahmanian 1

PageRank

• Examples of vertices:

– Web pages

– Twitter ids

– nodes on a computer network

• Examples of edges:

– Web page u has a hyperlink to web page v

– Twitterid u follows Twitterid v

– Nodes u and v are connected [undirected]

Copyright (C) 2012, V.S. Subrahmanian 2

PageRank: Basic philosophy

• The importance of a web is based on

– Number of web pages hyper-linking to that page

– Importance of those web pages.

• The importance of a Twitter user is based on:

– Number of followers and

– Importance of those followers.

Copyright (C) 2012, V.S. Subrahmanian 3

PageRank: Math

• Pretty simple.

• 𝑃𝑅 𝑣 =
1−𝑑

𝑁
+ 𝑑 ∗

𝑃𝑅(𝑢)

𝑜𝑢𝑡−𝑑𝑒𝑔𝑟𝑒𝑒(𝑢)𝑢 𝑖𝑠 𝑎 𝑝𝑟𝑒𝑑.𝑜𝑓 𝑣

Where

• Out-Degree(v) = out degree of v.

• N = total number of nodes

• D = damping factor, the prob that a user will continue
clicking, usually set to 0.85.

• Alternatively, 1-d is the probability that a visitor
reaches a page directly without following hyperlinks.

Copyright (C) 2012, V.S. Subrahmanian 4

Page Rank Algorithm

• Initially, set OLDPR(v) = 1/N for all vertices.
• Change = true;
• While change do

• OLDPR(v) = NEWPR(v)
• For each vertex v:

– 𝑁𝐸𝑊𝑃𝑅 𝑣 =
1−𝑑

𝑁
+ 𝑑 ∗

𝑂𝐿𝐷𝑃𝑅(𝑢)

𝑜𝑢𝑡−𝑑𝑒𝑔𝑟𝑒𝑒(𝑢)𝑢 𝑖𝑠 𝑎 𝑝𝑟𝑒𝑑.𝑜𝑓 𝑣

– Evaluate change

• Return NEWPR.
• Change is usually reset based on one of three factors:

– The “while” loop has been executed K times for some fixed K
determined by the user/app or

– The difference of PR from the previous iteration to the current
iteration is below some threshold for all nodes or

– Very few nodes change

Copyright (C) 2012, V.S. Subrahmanian 5

Example

Copyright (C) 2012, V.S. Subrahmanian 6

b

a

c d

g

f

e

Initially, PR(v)=1/7 for all vertices. Let d=0 (for smplicity).

1/7

1/7

1/7

1/7

1/7 1/7

1/7

Example – Iteration 1

Copyright (C) 2012, V.S. Subrahmanian 7

b

a

c d

g

f

e

PR(a) = (1-1/7)/7 = (6/7)/7 = 6/49 = 0.12.
Same for PR(b), e, f, g.

PR(c) = (1-1/7)/7 + (1/7)/1 + (1/7)/1 = 6/49 + 1/7 + 1/7 = 0.41
PR(d) = (1-1/7)/7 + (1/7)/1 + (1/7)/1 + (1/7)/1 + (1/7)/1 = 6/49 + 4/7 = 0.69

0.14

0.14

0.14

0.14

0.69 0.41

0.14

Example – Iteration 2

Copyright (C) 2012, V.S. Subrahmanian 8

b

a

c d

g

f

e

PR for a,b,e,f,g,c are unchanged. Why?
PR(d) = (1-1/7)/7 + (1/7)/1 + (1/7)/1 + (1/7)/1 + 0.41/1 = 6/49 + 3/7 + 0.41 = 0.96

0.12

0.12

0.12

0.12

0.96 0.41

0.12

Example – Iteration 2

Copyright (C) 2012, V.S. Subrahmanian 9

b

a

c d

g

f

e

No change. We see that the most important nodes come out on top!

0.12

0.12

0.12

0.12

0.96 0.41

0.12

Example 2

Copyright (C) 2012, V.S. Subrahmanian 10

b

a

c d

g

f

e

Let’s change things slightly. This time, c and d follow each other (or reference
each other).

Initially PR = 1/7 = 0.4 for everyone.

0.12

0.12

0.12

0.12

0.12 0.12

0.12

Example 2 – First Iteration

Copyright (C) 2012, V.S. Subrahmanian 11

b

a

c d

g

f

e

PR does not change for a, b, e, f, g.
PR(c) = 0.12/1 + 0.12/1 + 0.12/1 = 0.36

PR(d) = 0.12/1 + 0.12/1 + 0.12/1 + 0.12/1 = 0.48

0.12

0.12

0.12

0.12

0.48 0.36

0.12

Example 2 – Second Iteration

Copyright (C) 2012, V.S. Subrahmanian 12

b

a

c d

g

f

e

PR does not change for a, b, e, f, g.
PR(c) = 0.12/1 + 0.12/1 + 0.48/1 = 0.72

PR(d) = 0.12/1 + 0.12/1 + 0.12/1 + 0.36/1 = 0.72

0.12

0.12

0.12

0.12

0.72 0.72

0.12

Example 2 – Third Iteration

Copyright (C) 2012, V.S. Subrahmanian 13

b

a

c d

g

f

e

PR does not change for a, b, e, f, g.
PR(c) = 0.12/1 + 0.12/1 + 0.72/1 = 0.96

PR(d) = 0.12/1 + 0.12/1 + 0.12/1 + 0.72/1 = 1.08

0.12

0.12

0.12

0.12

1.08 0.96

0.12

Example 2 – Fourth Iteration

Copyright (C) 2012, V.S. Subrahmanian 14

b

a

c d

g

f

e

PR does not change for a, b, e, f, g.
PR(c) = 0.12/1 + 0.12/1 + 1.08/1 = 1.32

PR(d) = 0.12/1 + 0.12/1 + 0.12/1 + 0.96/1 = 1.32

0.12

0.12

0.12

0.12

1.08 0.96

0.12

Between-ness Centrality

• This part describes material in 2 papers:
U. Brandes. On variants of shortest-path
betweenness centrality and their generic
computation, Social Networks, Vol. 30, pages 136-
145, 2008

U. Brandes. A Faster Algorithm for Betweenness
Centrality, J. of Math. Sociology, Vol. 25, 2, pages
163-117, 2001.

Copyright (C) 2012, V.S. Subrahmanian 15

Between-ness centrality

• Suppose v is a node.
• Let s(s,t) be the number of shortest paths between s and t.
• Let s(s,t|v) be the number of shortest paths between s and

t that pass through v.
• Convention: s(s,s)=1; s(s,t|v)=0 if v = s or v=t. Also, 0/0 = 0.
• Between-ness centrality of v is given by:

𝑐𝐵 𝑣 =
s(s,t|v)

s(s,t)𝑠,𝑡 𝜖 𝑉

• A small variant definition requires that s≠t in the above
summation, i.e.

𝑐𝐵 𝑣 =
s(s,t|v)

s(s,t)𝑠≠𝑣≠𝑡≠ 𝑠,𝑡 𝜖 𝑉

Copyright (C) 2012, V.S. Subrahmanian 16

Example BC

• Let’s do a very simple
calculation of BC for the
vertices a in the graph
on the right.

𝐵𝐶 𝑎 =
s(a,a|a)
s(a,a)

 +
s(a,b|a)
s(a,b)

 +

s(a,c|a)
s(a,c)

 +
s(b,a|a)
s(b,a)

 +
s(b,b|a)
s(b,b))

 +

s(b,c|a)
s(b,c)

 +
s(c,a|a)
s(c,a)

 +
s(c,b|a)
s(c,b)

 +

s(c,c|a)
s(c,c)

 = 0 + 1 + 1 + 0 + 0 +

0 + 0 + 0 = 2.

Copyright (C) 2012, V.S. Subrahmanian 17

c

b

a

Some Math

• The dependency of s,t on v is:

d(𝑠, 𝑡|𝑣) =
s(s,t|v)

s(s,t)

Specifies ratio of shortest paths between s,t that go
through v.
• The dependency of s on v is:

d 𝑠 𝑣 = d(𝑠, 𝑡|𝑣)
𝑡 𝜖 𝑉

Dependency of s on v is just the sum of
dependencies of s,t on v for all possible targets t.

Copyright (C) 2012, V.S. Subrahmanian 18

Example BC

• 6 pairs of nodes
– a,b: SP = a,b

– a,c: SP = a,b,c

– b,c: SP = b,c

– b,a: no SP

– c,a: no SP

– c,b: no SP

• d(𝑎, 𝑐|𝑏) = 1.

• d 𝑎 𝑏) = d 𝑎, 𝑎 𝑏 =
d 𝑎, 𝑏 𝑏 + d 𝑎, 𝑐 𝑏 =

0 +
1

1
+
1

1
= 2.

Copyright (C) 2012, V.S. Subrahmanian 19

c

b

a

Example

• s(a,c) = 2 because there
are 2 shortests paths (a-
d-c, a-e-c).

• s(a,c|e) = 1 because
one of these shortest
paths goes through e.

Copyright (C) 2012, V.S. Subrahmanian 20

a

b

c

d

e

Example

• s(c,e) = 2 because there
are two shortest paths
(c-a-b,c-e-b).

• s(c,e|a) = 1 because
one of these shortest
paths goes through e.

Copyright (C) 2012, V.S. Subrahmanian 21

a

b

c

d

e

Example

• d(c,a|a) = 1.

• d(c,b|a) = 0.5.

• d(c,c|a) = 0.

• d(c,d|a) = 0.

• d(c,d|a) = 0.

Copyright (C) 2012, V.S. Subrahmanian 22

a

b

c

d

e

Example

• d(c|a) intuitively is the
sum of dependencies a
is involved in that
originate at c.

• d(c|a) = d(c,d|a) +
d(c,b|a) + d(c,c|a) +
d(c,d|a) + d(c,e|a) =
1.5.

• d(c|b) = DO
CALCULATION.

Copyright (C) 2012, V.S. Subrahmanian 23

a

b

c

d

e

Idea behind Algorithm

• Clearly, 𝐶𝐵 𝑣 = d(s|v)𝑠 𝜖 𝑉 because d(s|v)
is the ratio in the summation defining
between-ness centrality of v.

• So one approach is to compute 𝐶𝐵 𝑣 directly
via the pseudo-code:

Copyright (C) 2012, V.S. Subrahmanian 24

bc=0;
foreach s in V do bc = bc + d(s|v);
Return bc

From Brandes 2001

• Ps(v) = { u in V | (u,v) in E & dist(s,v)=dist(s,u) +
1}.

• Lemma. s(s,v) = s(𝑠, 𝑢).𝑢 𝑖𝑛 𝑃𝑠(𝑣)

• Number of SPs between s and v = Sum of
number of SPs between s and u where u is in
Ps(v).

Copyright (C) 2012, V.S. Subrahmanian 25

From Brandes 2001

• Lemma. If there is
exactly one SP from s to
each vertex t in V, then
d(s|v) =
 (1 + d(s|w)).𝑤:𝑣 𝑖𝑛 𝑃𝑠(𝑤)

• Why? Because for the
condition in the lemma
to be true, the graph
must be a tree.

• So v lies on either all or
none paths between s
and some vertex t in V.

• If v is a predecessor,
then it lies on the SP for
all such paths.

Copyright (C) 2012, V.S. Subrahmanian 26

Picture (from Brandes 2001)

Copyright (C) 2012, V.S. Subrahmanian 27

s v

w1

w2

w3

d(s|w1)

d(s|w2)

d(s|w3)

Clearly, v lies on the (unique) shortest path from s to all of v’s successors. So
d(s,t|v) is either 0 or 1.

Figure is taken from: U.
Brandes. A Faster Algorithm for
Betweenness Centrality, J. of
Math. Sociology, Vol. 25, 2,
pages 163-117.

From Brandes 2001

• Brandes proves that:

Copyright (C) 2012, V.S. Subrahmanian 28

Theorem. d(s|v) =
s(𝑠,𝑣)
s(𝑠,𝑤)
(1 + d(s|w)).𝑤:𝑣 𝑖𝑛 𝑃𝑠(𝑤)

Can do better

• Brandes shows that
d(s|v)

=
s(s,v)∗(1+d(s|w))

s(s,w)
𝑤: 𝑣,𝑤 𝜖 𝐸 & 𝑑𝑖𝑠𝑡 𝑠,𝑤 =𝑑𝑖𝑠𝑡 𝑠,𝑣 +1

• Here, dist(s,w) is the shortest path length from s
to w.

Copyright (C) 2012, V.S. Subrahmanian
29

s

w

v

nbr
sp

So we are looking for
w’s s.t. a shortest path
from s to w goes thru v
just before reaching w.

Can do better

• Brandes shows that

d(s|v) =
s(s,v)∗(1+d(s|w))

s(s,w)
𝑤: 𝑣,𝑤 𝜖 𝐸 & 𝑑𝑖𝑠𝑡 𝑠,𝑤 =𝑑𝑖𝑠𝑡 𝑠,𝑣 +1

• So the two s terms give the ratio of SPs between s and
w that go thru v.

• Dependency of s on w, d(s|w), is the percentage of SPs
from s to vertices t that go through w.

• The percentage of such shortest paths that go through
v is obtained by multiplying d(s|w) by the ratio of SPs
between s and w that go thru v. of SPs between s and
w that go thru v.

Copyright (C) 2012, V.S. Subrahmanian
30

Number of shortest
paths between s and v.

Number of shortest
paths between s and w.

Brandes Algorithm Idea

• Idea 1: Perform a breadth first traversal of the
graph. In each traversal, we compute the
number of SPs going through a given node.

• Idea 2: d(s,t|v) can be aggregated into
d(s|v)′s, reducing some computation.

• Time Complexity O(m*n) where m is the
number of edges, n is the number of vertices.

• Space Complexity O(m+n).

Copyright (C) 2012, V.S. Subrahmanian 31

Brandes BC Algorithm

• Outer loop considers each vertex s in V
– Initialization: Sets Pred(x) = NIL and dist(x) = ∞ for

all x. Sets dist(s)=0 and s(s)=1. s(v) denotes the
number of shortest paths from source s to v.

– Inner loop
• Gets element v from queue

• Finds all w s.t. (w,v) is an edge

• Updates dist(w), pred(w) and s(w) for such w’s.

– Accumulation
• Previous loops find SPs from selected s to other vertices

Copyright (C) 2012, V.S. Subrahmanian 32

Copyright (C) 2012, V.S. Subrahmanian 33

Algorithm on left is taken from:
U. Brandes. A Faster Algorithm for
Betweenness Centrality, J. of Math.
Sociology, Vol. 25, 2, pages 163-117.

Brandes BC Algorithm

• Accumulation Step

– Sets d(v), the dependency of s on v to 0.

– Iteratively pops elements from the stack.

– Updates dependency of s on v

• d(v) = d(v) + (1+ d(w))*s[v]/s(w)

• For w ≠ s, sets 𝑐𝐵 𝑤 = 𝑐𝐵 𝑤 + d(w).

Copyright (C) 2012, V.S. Subrahmanian 34

