Centrality measures in graphs or
social networks

PageRank

 Examples of vertices:
— Web pages
— Twitter ids
— nodes on a computer network

 Examples of edges:
— Web page u has a hyperlink to web page v

— Twitterid u follows Twitterid v
— Nodes u and v are connected [undirected]

PageRank: Basic philosophy

 The importance of a web is based on
— Number of web pages hyper-linking to that page
— Importance of those web pages.

* The importance of a Twitter user is based on:

— Number of followers and
— Importance of those followers.

PageRank: Math

* Pretty simple.

1-d
« PR(v) = T+ d * Zuisapred.ofv

Where
 QOut-Degree(v) = out degree of v.
e N =total number of nodes

D =damping factor, the prob that a user will continue
clicking, usually set to 0.85.

* Alternatively, 1-d is the probability that a visitor
reaches a page directly without following hyperlinks.

PR(u)
out—degree(u)

Page Rank Algorithm

Initially, set OLDPR(v) = 1/N for all vertices.
Change = true;

While change do
 OLDPR(v) = NEWPR(v)
* For each vertex v:

1-d

OLDPR
— NEWPR(v) = T'*'d*Zuisapred.ofv —

out—degree(u)

— Evaluate change
Return NEWPR.

Change is usually reset based on one of three factors:

— The “while” loop has been executed K times for some fixed K
determined by the user/app or

— The difference of PR from the previous iteration to the current
iteration is below some threshold for all nodes or

— Very few nodes change

Example

Initially, PR(v)=1/7 for all vertices. Let d=0 (for smplicity).

Copyright (C) 2012, V.S. Subrahmanian 6

Example — Iteration 1

PR(a) = (1-1/7)/7 = (6/7)/7 = 6/49 = 0.12.
Same for PR(b), e, f, g.
PR(c) = (1-1/7)/7 + (1/7)/1 + (1/7)/1 = 6/49 + 1/7 + 1/7 = 0.41
PR(d) = (1-1/7)/7 + (1/7)/1 + (1/7)/1 + (1/7)/1 + (1/7)/1 = 6/49 + 4/7 = 0.69

Copyright (C) 2012, V.S. Subrahmanian

Example — Iteration 2

PR for a,b,e,f,g,c are unchanged. Why?
PR(d) = (1-1/7)/7 + (1/7)/1 + (1/7)/1 + (1/7)/1+0.41/1=6/49 + 3/7 + 0.41 = 0.96

Copyright (C) 2012, V.S. Subrahmanian

Example — Iteration 2

No change. We see that the most important nodes come out on top!

Copyright (C) 2012, V.S. Subrahmanian

Example 2

Let’s change things slightly. This time, c and d follow each other (or reference
each other).
Initially PR = 1/7 = 0.4 for everyone.

Copyright (C) 2012, V.S. Subrahmanian

Example 2 — First lteration

PR does not change for a, b, e, f, g.
PR(c) =0.12/1 +0.12/1 + 0.12/1 = 0.36
PR(d) =0.12/1 + 0.12/1 + 0.12/1 + 0.12/1 = 0.48

Copyright (C) 2012, V.S. Subrahmanian

Example 2 — Second lteration

PR does not change for a, b, e, f, g.
PR(c) =0.12/1 + 0.12/1 + 0.48/1 = 0.72
PR(d) =0.12/1 + 0.12/1 + 0.12/1 + 0.36/1 = 0.72

Copyright (C) 2012, V.S. Subrahmanian

Example 2 — Third Iteration

PR does not change for a, b, e, f, g.
PR(c) =0.12/1 +0.12/1 + 0.72/1 = 0.96
PR(d) =0.12/1 + 0.12/1 + 0.12/1 + 0.72/1 = 1.08

Copyright (C) 2012, V.S. Subrahmanian

Example 2 — Fourth Iteration

PR does not change for a, b, e, f, g.
PR(c) =0.12/1 +0.12/1 + 1.08/1 = 1.32
PR(d) =0.12/1 + 0.12/1 + 0.12/1 + 0.96/1 = 1.32

Copyright (C) 2012, V.S. Subrahmanian

Between-ness Centrality

* This part describes material in 2 papers:

U. Brandes. On variants of shortest-path
betweenness centrality and their generic
computation, Social Networks, Vol. 30, pages 136-
145, 2008

U. Brandes. A Faster Algorithm for Betweenness
Centrality, J. of Math. Sociology, Vol. 25, 2, pages
163-117, 2001.

Between-ness centrality

Suppose v is a node.
Let o(s,t) be the number of shortest paths between s and t.

Let o(s,t|v) be the number of shortest paths between s and
t that pass through v.

Convention: o(s,s)=1; o(s,t|v)=0 if v = s or v=t. Also, 0/0 = 0.
Between-ness centrality of v is given by:

o (1) = Z o(s,t|v)

s,teV G(Slt)
A small variant definition requires that s#t in the above
summation, i.e.

o (v) = Z o(s,t|v)

SEVELEStEV G(s,t)

Example BC

* Let’s do a very simple
calculation of BC for the
vertices a in the graph

on the right. O
__o(a,ala) of(a,bla)
BC(a) = =S5a1 * ofab)

o(a,c|a) ' o(b,ala) . o(b,b|a) .
o(a,c) o(b,a) o(b,b))
o(b,c|la) o(c,ala) olc,bla) .
o(b,c) o(c,a) o(c,b)
G((;z,cc’lc;a) —0+1+1+0+0+
0+0+0=2.

Some Math

* The dependency of s,t on vis:
5(s, t|v) = o(s,t|v)
(s, tlv) = o(s,t)

Specifies ratio of shortest paths between s,t that go
through v.

 The dependency of s on v is:

5(s|v) = Et 3(s,t1v)

Dependency of s on v is just the sum of
dependencies of s,t on v for all possible targets t.

Example BC

* 6 pairs of nodes
— a,b:SP=23,b
— a,c: SP=2a,b,c
— b,c:SP =Db,c
— b,a: no SP O
— ¢c,a: ho SP
— c,b: no SP

* d(a,c|b) =1.

* 6(a|b) =d(a,alb) =
d(a,b|b) + 6(a,c|b) =
0+-+-=2,

Example

* o(a,c) =2 because there
are 2 shortests paths (a-
d-c, a-e-c).

* o(a,c|e) =1 because
one of these shortest
paths goes through e.

Example

* ofc,e) =2 because there
are two shortest paths

(c-a-b,c-e-b).

* o(c,e|a) =1 because
one of these shortest
paths goes through e.

O(c,ala) = 1.

O(c,b|a) =0.5.

O(c,cla) = 0.
O(c,d|a) =0.
d(c,d|a) = 0.

Example

Copyright (C) 2012, V.S. Subrahmanian

22

Example

e O(c|a) intuitively is the
sum of dependencies a
is involved in that
originate at c.

e O(cla)=0(c,d|a) +
d(c,b|a) + d(c,c|a) +
d(c,d|a) + d(c,e|a) =
1.5.

* d(c|b)=DO
CALCULATION.

ldea behind Algorithm

* Clearly, Cg(v) = sy 0(s|v) because o(s|v)
is the ratio in the summation defining
between-ness centrality of v.

* So one approach is to compute Cgz(v) directly
via the pseudo-code:

bc=0;

foreach sin V do bc = bc + o(s|v);
Return bc

Copyright (C) 2012, V.S. Subrahmanian

24

From Brandes 2001

* P(v)={uinV | (u,v)in E & dist(s,v)=dist(s,u) +
1}.

* Lemma. o(s,v) = 2.y, in p.(v) OIS, U).

e Number of SPs between s and v = Sum of

number of SPs between s and u where u is in
P.(v).

From Brandes 2001

e Lemma. If thereis .
exactly one SP from s to
each vertex tinV, then
o(s|v) =
Zw:v in Pg(w) (1 + 8(5|W))-‘

Why? Because for the
condition in the lemma
to be true, the graph
must be a tree.

So v lies on either all or
none paths between s
and some vertex tin V.

If v is a predecessor,
then it lies on the SP for
all such paths.

Picture (from Brandes 2001)

Figure is taken from: U.

Brandes. A Faster Algorithm for
Betweenness Centrality, J. of
Math. Sociology, Vol. 25, 2, o(s|wl)
pages 163-117.
°I--l"'."¢l.‘.".-‘ 8(S|W2)
o(s|w3)

Clearly, v lies on the (unique) shortest path from s to all of v’s successors. So

o(s,t|v) is either 0 or 1.

Copyright (C) 2012, V.S. Subrahmanian 27

From Brandes 2001

* Brandes proves that:

Z G(s V)

Theorem. 0(s|V) = Xy.py in P (w) o(sw)

Copyright (C) 2012, V.S. Subrahmanian

(1 +o(s|w)).

28

Can do better

* Brandes shows that
O(s|v)
o(s,v)*(1+0(s|w))

Z— . o(s,w)
w:(v,w)e E & dist(s,w)=dist(s,v)+1

* Here, dist(s,w) is the shortest path length from s
to w.

So we are looking for

w’s s.t. a shortest path
from s to w goes thru v
just before reaching w.

Number of shortest
Ca n d O b ette r paths between s and w.
Number of shortest
paths between s and v.
 Brandes shows that

5(s|v) 2 (G(S,V)i(1+5(SIW))
S|V) = >
)
w:(v,w)e E & dist(s,w)=dist(s,v)+1 @

e So the two o terms give the ratio of SPs between s and
w that go thru v.

* Dependency of s on w, o(s|w), is the percentage of SPs
from s to vertices t that go through w.

* The percentage of such shortest paths that go through
v is obtained by multiplying o(s|w) by the ratio of SPs
between s and w that go thru v. of SPs between s and
w that go thru v.

Brandes Algorithm Idea

ldea 1: Perform a breadth first traversal of the
graph. In each traversal, we compute the
number of SPs going through a given node.

ldea 2: o(s,t|v) can be aggregated into
O(s|v)’s, reducing some computation.

Time Complexity O(m™*n) where m is the
number of edges, n is the number of vertices.

Space Complexity O(m+n).

Brandes BC Algorithm

* QOuter loop considers each vertex sin V

— Initialization: Sets Pred(x) = NIL and dist(x) = o= for
all x. Sets dist(s)=0 and o(s)=1. o(v) denotes the
number of shortest paths from source s to v.

— Inner loop

e Gets element v from queue
e Finds all w s.t. (w,v) is an edge
e Updates dist(w), pred(w) and o(w) for such w’s.
— Accumulation
* Previous loops find SPs from selected s to other vertices

ALGORITHM |
Berweenness Centrality in Uinweighted Graphs

Calv] — 0, ve I,
for 5 & V¥ do

end

& +— empty stack;

Plw] ~— empty list, w € I;

alf] =0, r eV, ofs] = I;
dlfj — -1, re ¥V, ds]—0
() +— empty queue;

enguene £ — (J;

while @ not empry do
dequeue v —

push v — 5;

foreach neighbor w of v do
fiw found for the firsi time?
if dw] < O then
enqueue w — {J;
d[w] = dv] + I;

end

{{ shortest path ta w vig v?

if d[w] = d[¥] 4 | then
alw] — alw] 4 afv];
append v = Plu];

end

end
end
[v] =0, v £ F;
[& returns vertices in order of non-increasing distance from s
while & nor empiy do
pop w — 5;
for v € Fw] do &v) « &v] + ﬁ;’% (1 4 A[w]);
if w # 5 then Cglw] ~ Cglw] + &w]:
end

Algorithm on left is taken from:
U. Brandes. A Faster Algorithm for

Betweenness Centrality,). of Math.
Sociology, Vol. 25, 2, pages 163-117.

Copyright (C) 2012, V.S. Subrahmanian

33

Brandes BC Algorithm

* Accumulation Step
— Sets o(v), the dependency of s on v to O.
— Iteratively pops elements from the stack.

— Updates dependency of son v
* d(v) = 6(v) + (1+ o(w))*o[v]/c(w)
* Forw #s, sets cg(Ww) = cg(w) + &(w).

