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R-trees 

• R-trees are a generalization of B-trees to store 
rectangular data. 

• As before, we assume rectangles are 
characterized by 4 numbers 
(LEFT,RIGHT,BOTTOM,TOP). 

• An R-tree has an order m which is the number 
of rectangles that can be stored in a node. 

• Each R-tree node also has up to m children. 
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R-trees 

• Every node in an R-tree represents a region 
which is the minimal bounding rectangle 
(MBR) containing all the rectangles labeling 
that node. 

• All “data rectangles” are stored at leaf nodes. 

• Non-leaf nodes are supposed to be at least ½ 
full except for the root. 

• Rectangles labeling non-leaf nodes are 
“synthetic” rectangles. 
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Example 
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Insert A 
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Consider an R-tree of order 2. Each node has up to 2 rectangles and each node has up to 
2 children. Create a root with A in it. 

A 



Insert B 
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Insert B. There is space in the root, so just put B there. 

A B 



Example 
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Insert C 
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The root is now overflowing. So need to group A,B,C into two buckets. Each bucket must 
have at most 2 rectangles. Sum of the areas of the MBRs of the two buckets should be 
minimized. How should we split A,B,C into two buckets? 

A B 



Insert C 
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Clearly, the MBR of A,B is pretty small. So it is best to have one bucket with A,B in it, and 
the other with just C in it. G1 and G2 are synthetic rectangles the MBRs of the rectangles 
in their children. So G2 is identical to C. 

G1 G2 

A B C 



Example 
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Insert D 
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We want to insert D now. D causes  us to have to make a choice – go left or right? We go 
in whichever direction causes the smallest increase in the area of the synthetic 
rectangle. In this case, G2 would have to be expanded “less” for D to fit into it.   

G1 G2 

A B C 



Example 
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Insert D 
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So D ends up in the same node as C. 

G1 G2 

A B C D 



Insert E 
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Now insert E.  Should we branch left or right from the root? We go  in whichever 
direction causes the smallest increase in area of the synthetic rectangle involved.  

G1 G2 

A B C D 



Example 
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Insert E 
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So we now branch right (G2) because the increase in the area of an expanded G2 would 
be smaller than the increase in area of an expanded G1 that contains E. But when we 
come to the right child, we find that it is already full – so must split it. 

G1 G2 

A B C D 



Insert E 
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The right child contains C,D,E – so if we split it in two, we want two synthetic rectangles 
with minimal area – one is the MBR of C,D and the other is the MBR of just E. 

G1 G2 

A B C D 



Example 
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Insert E 
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The situation is as shown above. But this causes a synthetic rectangle G3 (identical to the 
MBR of E which equals E) to be promoted up. This causes the root node to split. 

G1 G2 

A B C D E 

G3 



Example 
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Insert E 
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We must decide how to merge G1,G2,G3 into two. Let us see how this works. 
Area(MBR(G1,G2))+Area(G3)= 28+3=31. Area(G1)+MBR(G2,G3)=6+24=30; 
Area(MBR(G1,G3))+Area(G2)= 35+12 = 47. So minimal area is obtained by merging 
G2,G3.  

G1 G2 
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Example 
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Insert E 
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We must decide how to merge G1,G2,G3 into two. Let us see how this works. 
Area(MBR(G1,G2))+Area(G3)= 28+3=31. Area(G1)+MBR(G2,G3)=6+24=30; 
Area(MBR(G1,G3))+Area(G2)= 35+12 = 47. So minimal area is obtained by merging 
G2,G3.  
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Example: Insert F 
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Insert F 
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Look at root. Which area would have to be expanded less in order to accommodate F? 
G1 or G4? Clearly G4. So branch right. 
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Insert F 
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Now look at the node {G2,G3}. Which area would have to be expanded least in order to 
accommodate F? G2 or G3? Clearly G3. So branch right. There is space here, so insert. 
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Insert F 
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Now look at the node {G1,G3}. Which area would have to be expanded least in order to 
accommodate F? G2 or G3? Clearly G3. So branch right. There is space here, so insert. 
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Example: Insert F 
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In-class Exercise: Build an R-Tree 
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Range Queries 

• INPUT: An R-Tree T and a query rectangle Q. 

• OUTPUT: All rectangles R in T that intersect Q. 

• Algorithm sketch: 

• VISIT-NODE 
– If N is not a leaf, then check each synthetic 

rectangle S labeling N.  If S intersects Q, then visit 
S’ child, otherwise prune that child. 

– If N is a leaf, check each rectangle R labeling N. If R 
intersects Q, insert R into the solution. 
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Example 
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Range Query Q 
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Root is not a leaf node. Check if Q intersects G1 and G4.  Q does NOT intersect G1 – so 
can prune the entire subtree associated with G1. Q does intersect G4 – so must consider 
that. 
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Range Query Q 
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The node being visited is not a leaf. Check to see if Q intersects G2, G3. It intersects both, 
so must check both.  
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Example: Range Query Q 
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Range Query Q 
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The node being visited is a leaf. Check to see if Q intersects C,D. it intersects both 
(because edges overlap.). 
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Range Query Q 

Copyright 2011, V.S. Subrahmanian 36 

The node being visited is a leaf. Check to see if Q intersects  E,F. it intersects both 
(because edges overlap.). Done. 
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In-class Exercise: Range Query Q 
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