EECE 315 - UBC
Assignment 2

Overview

In this assignment you will be working with the Thread system in the Nachos OS.
The overall goal for this assignment is to understand the basic multithreading
programming concepts and introduction to the Nachos OS code base.

In this assignment, we will focus on the code given in the code/threads folder.

synch.cc

Synch.cc contains routines for synchronizing threads. Three kinds of
synchronization routines are defined here: semaphores, locks and condition
variables (the implementation of the last two are left for the assignment).

Any implementation of a synchronization routine needs some primitive atomic
operation. We assume Nachos is running on a uniprocessor, and thus turning off
interrupts can provide atomicity. While interrupts are disabled, no context switch
can occur, and thus the current thread is guaranteed to hold the CPU throughout,
until interrupts are re-enabled.

Because some of these routines might be called with interrupts already disabled
(Semaphore::V for one), instead of turning on interrupts at the end of the atomic

operation, we always simply reset the interrupt state back to its original value
(whether that be disabled or enabled).

thread.cc
Thread.cc contains routines to manage threads. There are four main operations:

Fork -- create a thread to run a procedure concurrentlywith the caller (this is done
in two steps - first allocate the Thread object and then call Fork on it)

Finish -- called when the forked procedure finishes, to clean up
Yield -- relinquish control over the CPU to another ready thread

Sleep -- relinquish control over the CPU, but thread is now blocked.In other words,
it will not run again, until explicitly put back on the ready queue.

Join- Makes the current thread wait until the execution of this thread is over. (the
implementation of join is left as a part of this assignment).

threadTest.cc

Contains test cases that we will be using for this assignment.

For further references please follow the link below:
http://people.cs.uchicago.edu/~odonnell/OData/Courses/CS230/NACHOS/code-

dispatch.html

For this assignment, we provide a modified version of Nachos that includes the
additional test cases and function declarations.

Please download the modified version of Nachos and compile it the same way you
did for previous Assignment.

Running test cases:
To execute a test case, use the following command in the code/threads folder:
./nachos -q <test_case_num>

Task 1

Part 1: Implement lock variable:

After compiling Nachos, go to the code/threadsfolder and run the following
command.
./nachos -q 3

This will run the testcase ThreadTestLock() given in the testThread.cc file.

You should be able to see the output similar to incorrectOutputLock.txt file. In
order to have the correct output, you need to implement two functions declared in
the synch.cc file.

* Acquire() - This function can be used by a thread before entering the critical
region. When a thread tries to acquire the lock to enter the critical region, if
the lock is available the thread acquires the lock, otherwise the thread is
added to the wait queue and sent to sleep mode.

* Release() - As soon as the lock is released by any process, use the queue to
find the next waiting thread. If there is any thread waiting, assign the thread
to the scheduler to continue its execution.

Once you implement these 2 functions correctly, your output should match the
correctOutputLock.txt file.

Part 2: Implement condition variable:

Code to be implemented:

Implement condition variables using interrupt enabling and disabling to provide
atomicity. The class “Condition” should be declared in the file
“code/threads/synch.h”, and the definition of its member function should be placed
in the file “code/threads/synch.cc”. The signatures for the member functions have
already been given in “code/threads/synch.h” and you should use them in your code.
You can add member variables if you need.

Problem description:
Your condition variable class should have three interfaces:
Wait(Lock*),Signal(Lock*) and Broadcast(Lock*).

Wait(Lock*)should be triggered when the condition or predicate is not fulfilled in
the current thread and let the current thread to sleep until other threads wake it up.

Signal(Lock*)should be called when a condition or predicate is met, and wake up
one of the threads waiting for the signal.

Broadcast(Lock*) should be called like Signal(Lock*), but Broadcast(Lock*) should
wake up all the threads that are waiting for the signal.

To avoid a race condition, usually a lock is used along with condition variables.
When checking the condition or predicate, we need to make sure no other thread
can update the condition or predicate by using a lock here.

Wait(Lock*) should release the lock before the thread goes to sleep to allow other
threads go ahead and change the condition in future. When waking up from sleep,
the thread will be in Wait(Lock*), and it should re-acquire the lock to avoid racing
with other threads if it is going to change the condition or predicate further.

Signal(Lock*) and Broadcast(Lock*) will need to check if the current thread holds
the lock. An valid call to Signal(Lock*) or Broadcast(Lock*) should always hold the
lock to ensure there is no racing with other threads. Finally, after a condition being
changed and a signal being sent, release the lock to allow other threads to modify
and check the condition.

Generally, a lock should be used to guarantee the exclusively checking or modifying
of the condition, and condition variable should be used to control the sleeping and
waking up of the threads.

Testing your code:

For testing your code, you can use the provided test cases implemented in
“code/threads/threadtest.cc”. By specifying the argument follows “-q 4” (e.g.,
“/nachos -q 4”), you can choose to run the test for your implementation of condition

variable. Nachos will end up with an assertion failas condition variable has not
been implemented yet to prevent infinite loop (see that in the output messages
provided in the release package). The correct output is the same as the output
from “semaphore” test (also provided in the package). Debug information can be
enabled with “-d” argument appended (e.g., “/nachos -q 4 -d”).

Hints:

1. Read the code of semaphore carefully, and try to understand how the
implementation manipulate the thread queue through the scheduler, and
how a queue kept by semaphore being used to pause and continue the
related threads.

2. The operations in Wait(Lock*):“release the lock, add current thread to the
waiting list of this condition variable, let the current thread sleep” should be
done atomically. Disabling and enabling the interrupt in the right time to
achieve that.

3. Our implementation of condition variable doesn’t have an “Event or
Condition or Predicate” structure explicitly associated in neither the class
definition nor the argument list. You can use a global variable as the
condition, test the value of it as checking the condition and change the value
as updating the condition.

4. You can find a typical use case of condition variable in the following link,
which is basically a monitor model. There is also an explanation about why a
mutex lock is not enough for such situations (for saving CPU time).
http://en.wikipedia.org/wiki/Monitor_(synchronization)

5. Here is another note about lock and condition variable might be useful.
http://www.stanford.edu/class/cs140/cgi-bin/lecture.php?topic=locks

Task 2

After compiling Nachos, go to the code/threads folder and run the following
command.
./nachos -q 6

The output that you get for this will be similar to what is given in
incorrectOutputjoin.txt. This output is not correct, as the implementation for the
thread join function is pending.

For join usage reference you can view the join usage in threadtest.cc file.

Code to be implemented:

In the file thread.h we have defined a trivial join function that simply returns
without doing any task. Your job is to complete the function code and make sure
that join works correctly.

Once you are done with the implementation, compile the code and run the same test
case. Your output should be similar to what is given in correctOutputjoin.txt file.

Hints:

* You need to transfer the control from current thread to the calling thread.

* You need to make sure that when the calling thread is finished, the control is
returned back to the current thread. You will need to modify the Finish
function given in the thread.cc file for this.

* You can declare private variables within the class if required.

* You can use the scheduler class to find out next available thread in the ready
state.

* Follow the code given the Thread::Yieldfunction to see the scheduler usage.

Bonustask - Implement Mailbox

Problem description:

You will implement synchronous send and receive of one word messages (one int
value) using locks and condition variables. Create a "Mailbox" class with the
operations intMailbox::Send(int message) and intMailbox::Receive(int *
Message).

Send atomically waits until Receive is called on the same mailbox, and then return
with received message. Once the Receive received the message, both can return.
Similarly, Receive waits until Send is called, at which point a new message has
beensent.

Your solution should work even if there are multiple senders and receivers for the
same mailbox. Note that you cannot use explicit wait queues, Sleep, or
disable/enable interrupts to implement Mailbox; the condition variables will
do all of that for you. Also, it is not necessary to "match" sending and receiving
threads -- a receiver does not care from which sender it gets a message.

Example:
First of all, let’s assume Thread 1 gets the priority to run first.
Thread 1 Thread 2
Send(1) Receive(int*)
Send(2) Receive(int*)
Receive(int*) Send(3)

The correct returning queue of those function calls should be:

Thread 1: Send (1)
Thread 2: Receive() return 1
Thread 1: Send(2)
Thread 2: Receive() return 2
Thread 2: Send(3)
Thread 1: Receive() return 3

Note there is no Thread::Yield() called to manipulate the execution queue here to
control the execution queue, which means, no matter what context switching
methods are used, the returning queue of those sending and receiving requests
should remain the same (in test code, we need to use Yield() to intertwine the
execution order).Note the calling queue can be differentfrom the returning queue
shown above.

Code to be implemented:

You should declare your Mailbox class in “code/threads/synch.h” (as the signatures
have already been provided) and define the member functions in
“code/threads/synch.cc”. The test code in “code/threads/threadtest.cc” will
instantiate your Mailbox class and call its member functions to simulate the
Sending-Receiving situation. You need to use the signatures of the functions
provided and keep the test code untouched. You may add member variables as you
want. In your implementation of Send(int) and Receive(int*), you should return the
sent value or the received value(not the pointer to it) when the function returns.
Code in “code/threads/threadtest.cc” will print the sent and received value to the
terminal.

Testing your code:

For testing your implementation, you can execute nachos with following command:
“/nachos -q 5”. Nachos will display with “sent: 0” and “received: 0” as the Mailbox
has not been implemented yet (check both the correct output and this default
output in the provided output messages). If you need the debug information
collected by the MACRO “DEBUG”, you need to append argument “-d” after this
command.

Hints:

1. You can define the condition variables and locks required (or the pointers to
them) as member variables of your Mailbox class.

2. Think about how many condition variables are required in multiple senders
and multiple receivers situation, which simply means many calls to Send()
and Receive(). And how many locks are required.

3. You can think this as a simple implementation of monitor mentioned here
(the two links mentioned in the condition variable
part):http://en.wikipedia.org/wiki/Monitor_(synchronization)http://www.s
tanford.edu/class/cs140/cgi-bin/lecture.php?topic=locks as they share the
same mechanism to let the current thread sleep for waiting and wake up a
thread to let it go on.

Evaluations

Task 1
Correct output for Lock 30%
Correct output for Conditions 30%
Task 2
Correct output for Join 40%
Bonus
Correct output 20% (extra)

Submission Guidelines

You need to submit 4 files, that you will be modifying for this assignment:
Synch.cc
Synch.h
Thread.cc
Thread.h

Create and submit the zip file as an attachment to the eece315term2@gmail.com
with the subject as follows:
“Assignment 2: <Group No.>"

Once you submit the assignment, you will receive an automated reply from the
system. You need to show that reply to the TA before they could assess your
assignment in the lab, to make sure that you have submitted your assignment
correctly.

