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Introduction 
  As discussed earlier, cooperating processes can either directly 

share a logical address or be allowed to share data through files or 
messages.!
  Concurrent access to shared data may result in data inconsistency!
  Maintaining data consistency requires mechanisms to ensure the 

orderly execution of cooperating processes!

  To describe the problem, let’s look at an example:!
  Consider the consumer-producer problem that we discussed in Ch 3!

 Suppose that we want to provide a solution to the consumer-
producer problem that fills all the buffers. !

 We can do so by adding an integer counter that keeps track of the 
number of full buffers.  !

  Initially, counter is set to 0. It is incremented by the producer after it 
produces a new buffer and is decremented by the consumer after it 
consumes a buffer.!
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Producer-Consumer with counter 
while (true) { 

         /*  produce an item and put in nextProduced  */ 

       while (counter == BUFFER_SIZE) 

   ; /* do nothing */ 

   buffer [in] = nextProduced; 

   in = (in + 1) % BUFFER_SIZE; 

   counter++; 

}   !
 

while (true)  { 

       while (counter == 0) 

         ; /* do nothing */ 

   nextConsumed =  buffer[out]; 

   out = (out + 1) % BUFFER_SIZE; 

       counter--; 

   /*  consume the item in nextConsumed */ 

} 

Producer 
process 

Consumer 
process 

= modified 
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Race Condition 
  We now show that the value of counter may be incorrect when both the 

producer and consumer execute concurrently, as follows:!

  Consider this execution interleaving, with “counter = 5” initially:!
!S0: producer execute register1 = counter   {register1 = 5} 
S1: producer execute register1 = register1 + 1   {register1 = 6}  
S2: consumer execute register2 = counter   {register2 = 5}  
S3: consumer execute register2 = register2 - 1   {register2 = 4}  
S4: producer execute counter = register1   {counter = 6 }  
S5: consumer execute counter = register2   {counter = 4}!

!

  A situation like this is called a race condition,!
  where several processes access and manipulate the same data 

concurrently and !
  the outcome of the execution depends on the particular order in which 

the access is taken place.!

counter++ could be implemented as: 
  register1 = counter 
  register1 = register1 + 1 
  counter = register1 

counter-- could be implemented as: 
  register2 = counter 
  register2 = register2 - 1 
  counter = register2 
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Critical Section 
  The critical-section problem is to design a protocol that the processes can 

use to cooperate.!

  Consider a system consisting of n processes  {P0, P1, …, Pn-1}!
  Each process has a segment of code called a critical section.!
  When one process is executing in its critical section, no other process 

is allowed to execute in its critical section.!
  Each process must request permission to enter its critical section.!

An analogy for 
a critical section 
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!do {  
  entry section  

 

   critical section  

 

  exit section  

 

   remainder section  

 } while (TRUE); !!

General Structure of a Typical Process 

  Each process must somehow request permission to enter its critical section. 
The entry section is the section of code that implements this request.!

  The critical section may be followed by an exit section.!
  The remaining code is the remainder section.!
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Solution to Critical-Section Problem 
  A solution to the critical section problem must satisfy three requirements:!

1. !Mutual Exclusion - If process Pi is executing in its critical section, then 
no other processes can be executing in their critical sections!

!
2. !Progress - If no process is executing in its critical section and there exist 

some processes that wish to enter their critical section, then the 
selection of the processes that will enter the critical section next cannot 
be postponed indefinitely!

!
3. !Bounded Waiting -  A bound must exist on the number of times that 

other processes are allowed to enter their critical sections after a 
process has made a request to enter its critical section and before that 
request is granted!
�   Assume that each process executes at a nonzero speed,!
�   however, no assumption concerning relative speed of the n 

processes is made!
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Peterson’s Solution 
  A classic software-based solution to the critical section problem is known as 

Peterson’s solution. !
  This solution is not guaranteed to work on modern computers due to the 

way load and store perform!
  Nevertheless a good algorithmic description of a solution!

  Assuming that the load and store instructions cannot be interrupted 
(atomic), the Peterson’s solution can be used for two processes.!

  Two processes (P0 and P1) are required to share two variables:!
int turn;  

Boolean flag[2]; 
 

  The variable turn indicates whose turn it is to enter the critical section.  !
  The flag array is used to indicate if a process is ready to enter the 

critical section. !
  flag[i] = true  implies that process Pi is ready (i: 0 or 1) !
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!do {  
  flag[i] = TRUE;  

  turn = j;  

  while (flag[j] && turn == j);  

 

   critical section  

 

  flag[i] = FALSE;  

   remainder section  

 } while (TRUE); !!

Algorithm for Process Pi 
Note: j is equal to 1-i 
        where i is 0 or 1 

  This solution is correct, as we can show that it satisfies the three 
requirements (page 208 of the 9th edition of the text or page 230 of the 
Essential edition).!

entry 
section 

exit 
section 
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Synchronization Hardware 
  In a uniprocessor system, the critical-section problem could be 

solved if we could disable interrupts (e.g. in non-preemptive kernels) !
  since current sequence of instructions would execute without preemption!
  this approach is generally too inefficient on multiprocessor systems!

 Operating systems using this not broadly scalable!

  Modern computer systems provide special hardware instructions that 
allow us to atomically !
  either test/modify the content of a word !
  or to swap the contents of two words!

 Atomic = as one non-interruptable unit!

  These instructions can be used to solve the critical-section problem in a 
relatively simple manner.!
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Synchronization Hardware (cont) 
  Many systems provide hardware support for critical section code!

  We can generally state that any solution to the critical-section requires 
a simple tool, a lock. The mutex lock (mutual exclusion) is the 
simplest of such tools.  

!do {  
  acquire lock  

      critical section  

  release lock  

   remainder section  

 } while (true);  

  In the following we first look at a number of simple hardware instructions:!
  that are available on many systems !
  to show how they can be used effectively to solve the critical section 

problem.!
  We abstract the main concepts behind these types of instructions by 

describing TestAndSet() and Swap() instructions !
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TestAndSet() Instruction  
  The TestAndSet() instruction, which is executed atomically, can be defined 

as:!

  If a machine supports the TestAndSet() instruction atomically, then we can 
implement mutual exclusion by declaring a Boolean variable lock, initialized 
to false.!

   

boolean TestAndSet (boolean *target) 

      { 

           boolean rv = *target; 

           *target = TRUE; 

           return rv; 

      } 

  do { 

           while ( TestAndSet (&lock )) 
                ; /* do nothing */ 
 

                 /* critical section here */ 
 

           lock = FALSE; 
 

                 /*  remainder section here */ 
 

      } while (TRUE); 
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Compare_and_Swap() Instruction 
  The Swap() instruction, which is executed atomically, can be defined as:!

   

 void Compare_and_Swap (boolean *a, boolean *b, boolean *c) 

    { 

         boolean temp = *a; 

         if (*a == *b) 

           *c = temp; 

    } 

 do { 

    while ( Compare_and_swap(&lock, 
    FALSE, TRUE) ) { 

          // Do nothing 

        } 

 /* critical section here */ 
 

    lock = FALSE; 
 

    /*   remainder section   */ 

 } while (TRUE); 

  Assume that each 
process has a local 
Boolean variable key 

Q: Do these algorithms satisfy 
the bounded-waiting 
requirement?!
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Bounded-waiting Mutual Exclusion with TestAndSet() 

 do {  

  waiting[i] = TRUE;  

  key = TRUE;  

  while (waiting[i] && key)  

   key = TestAndSet(&lock);  

  waiting[i] = FALSE;  

      /* critical section here */ 

  j = (i + 1) % n;  

  while ((j != i) && !waiting[j])  

   j = (j + 1) % n;  

  if (j == i)  

   lock = FALSE;  

  else  

   waiting[j] = FALSE;  

      /* remainder section here */ 

 } while (TRUE); 

  The following algorithm 
based on TestAndSet() 
satisfies all the critical-
section requirements:!
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Semaphore 
  A semaphore is a less complicated and more practical synchronization tool!

  a semaphore S is an integer variable!
  S can be accessed only through two standard atomic operations: !

  wait() and signal() 

 These two operations were originally called P() and V() 

  There are two types of semaphores: counting and binary!
!

wait (S)  

{  

     while (S <= 0) 

       ; /* no-op */ 

     S--; 

} 

!

signal (S)  

{  

     S++; 

} 

!
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Semaphore as General Synchronization Tool 
  The value of a counting semaphore can range over an unrestricted domain!

  e.g. set to the # resources available!
  The value of a binary semaphore can range only between 0 and 1; !

  binary semaphores behave like (and on most systems are also known 
as) mutex locks  (mutual exclusion),!

  and are simpler to implement !
  Mutual exclusion can be implemented with binary semaphores as follows:!

  Semaphores can be used to solve various synchronization problems.!
 

Semaphore mutex;    /*  initialized to 1  */ 

do { 

 wait (mutex); 

       /* critical Section here */ 

   signal (mutex); 
 

     /* remainder section here */ 

} while (TRUE); 

 



EECE 315                             PPTSet6 – Process Synchronization                          6-20!

Semaphore Implementation 
  All modifications to the semaphore in the wait() and signal() operations 

must be executed indivisibly!
  i.e. when one process modifies the semaphore value, no other process 

can simultaneously modify the same semaphore value.!

  The main disadvantage of the previous semaphore definition is that it 
requires busy waiting.!
  While a process is in its critical section, any other process that tries to 

enter its critical section must loop continuously.!
 This type of semaphore is also called a spinlock because the 

process spins while waiting for the lock.!
  This continuous looping is clearly a problem as it wastes CPU cycles 

that some other process might be able to use productively.!
 On the other hand, spinlocks do have an advantage in that no 

context switch is required when the process must wait on a lock,!
 so, spinlocks are useful, when locks are expected to be held for 

short times.!
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Semaphore Implementation with no Busy waiting  

  To overcome the need for busy waiting, we can modify wait and signal 
operations.!
  Rather than engaging in busy waiting, the process can block itself.!

  With each semaphore there is an associated waiting queue. Each entry 
has two data items:!
   a value (of type integer)!
   a pointer to next record in the list!
!
!

  The following two operations (provided by OS as basic system calls) are 
used:!
  block – The block() operation suspends the process invoking the 

operation and places it on the appropriate waiting queue.!
  wakeup – The wakeup() operation removes one of processes in the 

waiting queue and place it in the ready queue (i.e. resuming the 
operation of a blocked process).!

                        !

typedef struct{ 

   int value; 

   struct process *list; 

}semaphore; 
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Implementation with no Busy waiting (cont) 

  Implementation of wait():!
      wait(semaphore *S)  
      {  
      S->value--;  
      if (S->value < 0) {  
     /* add this process to S->list here  */ 
     block();  
  }  
    } 

 

  Implementation of signal():!

      signal(semaphore *S)  
      {  
  S->value++;  
  if (S->value <= 0) {  
     /* remove a process P from S->list here */  
     wakeup(P);  
  } 
    }  
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Problems with Semaphores 

  Some possible incorrect use of semaphore operations:!
  incorrect order !

 e.g. in this example, mutual exclusion is violated!

   incorrect use !
 e.g. in this example, deadlock will occur!

   Omitting wait() or signal() (or both)!
 either mutual exclusion is violated or deadlock 

will occur!

signal (mutex)   
…  

wait (mutex) 

wait (mutex)   

  …   

wait (mutex) 

  Semaphores provide a convenient and efficient mechanism for process 
synchronization, though using them incorrectly can result in timing errors 
that are difficult to detect!
  these errors happen only if some particular execution sequence take 

place!
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Deadlock and Starvation 
  Deadlock – two or more processes are waiting indefinitely for an event that 

can be caused by only one of the waiting processes!
  e.g. let S and Q be two semaphores initialized to 1!

! !        P0 !                                                 P1!

! !     wait (S); !                                   wait (Q);!
! !      wait (Q); !                                   wait (S);!

       ! !. !                                        .!
!          !. !                                        .!
!          !. !                                        .!
! !      signal  (S); !                                  signal (Q);!
! !      signal (Q); !                                  signal (S);!

  Starvation (indefinite blocking) – A process may never be removed from the 
semaphore queue in which it is suspended!
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Deadlock (cont) 
  In a deadlock, processes never finish executing, and system resources are 

possibly tied up, preventing other jobs from starting.!

  A deadlock situation can arise if these four conditions hold simultaneously:!
  Mutual exclusion:  only one process at a time can use a resource!
  Hold and wait:  a process holding at least one resource is waiting to 

acquire additional resources held by other processes!
  No preemption:  a resource can be released only voluntarily by the 

process holding it, after that process has completed its task!
  Circular wait:  there exists a set {P0, P1, …, Pn} of waiting processes such 

that P0 is waiting for a resource that is held by P1, P1 is waiting for a 
resource that is held by P2, …, Pn–1 is waiting for a resource that is held by 
Pn, and Pn is waiting for a resource that is held by P0.!

R0 

P0 P1 

R1 
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Critical Section Problem in Kernel Code 
  At any given point of time,  many kernel-mode processes may be active in 

the OS. !
  As a result, the code implementing an OS (kernel code) is subject to 

several possible race conditions.!

  Two general approaches are used to handle critical sections in operating 
systems: depending on whether the kernel is preemptive or nonpreemptive!
  Obviously, a nonpreemptive kernel is essentially free from race 

conditions on kernel data structures, as only one process is active in the 
kernel at a time (and is not preempted).!

  Preemptive kernel though must be carefully designed to ensure shared 
kernel data is free from race conditions. This is specially difficult to 
design for SMP architectures. !

Q: Why, then, would we favor a preemptive kernel over a nonpreemptive one?!
  a preemptive kernel is more responsive, and!
  a preemptive kernel is more suitable for real-time programming!
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Classical Problems of Synchronization 
  We are going to discuss a number of synchronization problems 

that are used for testing newly proposed synchronization schemes:!

  Bounded-Buffer Problem!

  Readers and Writers Problem!

  Dining-Philosophers Problem!
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Bounded-Buffer Problem 
  As discussed before, the buffer has N buffers, each can hold one item!
  Semaphore mutex, provides mutual exclusion (initialized to the value 1)!
  Semaphore full, counts the # of full buffers (initialized to the value 0)!
  Semaphore empty, counts the # of empty buffers (initialized to the value N)!

The structure of the producer process:!
do { 

    /*  produce an item in nextp  */ 

    wait (empty); 

    wait (mutex); 

    /*  add the item to the buffer */ 

    signal (mutex); 

    signal (full); 

} while (TRUE); 

The structure of the consumer process:!
do { 

    wait (full); 

    wait (mutex); 

    /* remove an item from buffer to     
    nextc */ 

    signal (mutex); 

    signal (empty); 

    /* consume the item in nextc */ 

} while (TRUE); 
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Readers-Writers Problem 
  Suppose a database is to be shared among a number of concurrent 

processes!
  Readers are the processes that only read the data set; they do not 

perform any updates!
  Writers are the processes that can both read and write  

!

  Readers-writers synchronization problem: allows multiple readers to read at 
the same time.  Only one single writer can access the shared data at the 
same time!
  There are different variants of the problem. !
  e.g. the first problem requires that no reader be kept waiting unless a 

writer already obtained permission to use the shared object. The 
second problem requires that once a writer is waiting to access the 
object, no new readers may start reading. !

  For the solution, the processes shared the following data structures:!
  Semaphore mutex (initialized to 1)!
  Semaphore wrt (initialized to 1)!
  Integer readcount (initialized to 0)!

Semaphore mutex, wrt; 

int readcount; 
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Readers-Writers Problem (Cont.) 

The structure of a writer process:       !
do { 

    wait (wrt) ; 

    /* writing is performed */ 

    signal (wrt) ; 

} while (TRUE); 

The structure of a reader process:!
do { 
    wait (mutex) ; 
    readcount++ ; 
    if (readcount == 1)   

     wait (wrt) ; 
    signal (mutex) ; 
    /* reading is performed */ 
    wait (mutex) ; 
    readcount-- ; 
    if (readcount  == 0)   

  signal (wrt) ; 
    signal (mutex) ; 
} while (TRUE); 

Q: May the solution result in starvation?!
!

  The readers-writes problem and its solutions have been generalized to 
provide reader-writer lock on some systems!

  The following code segment presents a solution to the readers-writers 
problem (which one ? first or second ?) : !
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Dining-Philosophers Problem 
  The dining philosophers problem is considered a classic synchronization 

problem!
  Consider five philosophers, who spend their lives thinking and eating:!

  One simple solution starts with representing each chopstick with a 
semaphore!
  Semaphore chopstick [5] (initialized to 1)!

bowl of 
rice 

single 
chopstick 
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Dining-Philosophers Problem: Solution 
The structure of Philosopher i:!
do {  

    wait ( chopstick[i] ); 

    wait ( chopStick[ (i + 1) % 5] ); 

    /*  eat  */ 

    signal ( chopstick[i] ); 

    signal (chopstick[ (i + 1) % 5] ); 

    /*  think */ 

} while (TRUE); 

This solution will create a deadlock. To see this, assume that 
 all philosophers simultaneously pick up their left/right forks 

 
Each philosopher is waiting for their left/right forks, which are  
being held by other philosophers who’re waiting too. So they’ll  

starve (both literally and figuratively J 
 

How do you avoid starvation ? 
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Dining Philosophers: Solution 

  The prior solution solves mutual exclusion, though it may create a deadlock. 
To remedy that, we may:!
  allow at most four philosophers to be sitting simultaneously, or!
  allow a philosopher to pick up her chopsticks only if both chopsticks are 

available, or !
  use an asymmetric solution!

  an odd philosopher picks up first her left chopstick and then her right 
chopstick, whereas an even philosopher does the reverse!
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