
EECE 315 – L6 6-1!

4 - Process
Synchronization

EECE 315 (101)

ECE – UBC
2013 W2

Acknowledgement: This set of slides is partly based on the PPTs provided by the Wiley’s companion website (including textbook
images, when not explicitly mentioned/referenced).

EECE 315 PPTSet6 – Process Synchronization 6-2!

Lecture Outline

!
!
!

  Background!
  The Critical-Section Problem!
  Peterson’s Solution!

  Synchronization Hardware!

  Semaphores!

  Classic Problems of Synchronization!
!

EECE 315 PPTSet6 – Process Synchronization 6-3!

Introduction
  As discussed earlier, cooperating processes can either directly

share a logical address or be allowed to share data through files or
messages.!
  Concurrent access to shared data may result in data inconsistency!
  Maintaining data consistency requires mechanisms to ensure the

orderly execution of cooperating processes!

  To describe the problem, let’s look at an example:!
  Consider the consumer-producer problem that we discussed in Ch 3!

 Suppose that we want to provide a solution to the consumer-
producer problem that fills all the buffers. !

 We can do so by adding an integer counter that keeps track of the
number of full buffers. !

  Initially, counter is set to 0. It is incremented by the producer after it
produces a new buffer and is decremented by the consumer after it
consumes a buffer.!

EECE 315 PPTSet6 – Process Synchronization 6-4!

Producer-Consumer with counter
while (true) {

 /* produce an item and put in nextProduced */

 while (counter == BUFFER_SIZE)

 ; /* do nothing */

 buffer [in] = nextProduced;

 in = (in + 1) % BUFFER_SIZE;

 counter++;

} !

while (true) {

 while (counter == 0)

 ; /* do nothing */

 nextConsumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

 counter--;

 /* consume the item in nextConsumed */

}

Producer
process

Consumer
process

= modified

EECE 315 PPTSet6 – Process Synchronization 6-5!

Race Condition
  We now show that the value of counter may be incorrect when both the

producer and consumer execute concurrently, as follows:!

  Consider this execution interleaving, with “counter = 5” initially:!
!S0: producer execute register1 = counter {register1 = 5} 
S1: producer execute register1 = register1 + 1 {register1 = 6}  
S2: consumer execute register2 = counter {register2 = 5}  
S3: consumer execute register2 = register2 - 1 {register2 = 4}  
S4: producer execute counter = register1 {counter = 6 }  
S5: consumer execute counter = register2 {counter = 4}!

!

  A situation like this is called a race condition,!
  where several processes access and manipulate the same data

concurrently and !
  the outcome of the execution depends on the particular order in which

the access is taken place.!

counter++ could be implemented as: 
 register1 = counter
 register1 = register1 + 1
 counter = register1

counter-- could be implemented as:
 register2 = counter
 register2 = register2 - 1
 counter = register2

EECE 315 PPTSet6 – Process Synchronization 6-6!

Critical Section
  The critical-section problem is to design a protocol that the processes can

use to cooperate.!

  Consider a system consisting of n processes {P0, P1, …, Pn-1}!
  Each process has a segment of code called a critical section.!
  When one process is executing in its critical section, no other process

is allowed to execute in its critical section.!
  Each process must request permission to enter its critical section.!

An analogy for
a critical section

EECE 315 PPTSet6 – Process Synchronization 6-7!

!do {
 entry section

 critical section

 exit section

 remainder section

 } while (TRUE); !!

General Structure of a Typical Process

  Each process must somehow request permission to enter its critical section.
The entry section is the section of code that implements this request.!

  The critical section may be followed by an exit section.!
  The remaining code is the remainder section.!

EECE 315 PPTSet6 – Process Synchronization 6-8!

Solution to Critical-Section Problem
  A solution to the critical section problem must satisfy three requirements:!

1. !Mutual Exclusion - If process Pi is executing in its critical section, then
no other processes can be executing in their critical sections!

!
2. !Progress - If no process is executing in its critical section and there exist

some processes that wish to enter their critical section, then the
selection of the processes that will enter the critical section next cannot
be postponed indefinitely!

!
3. !Bounded Waiting - A bound must exist on the number of times that

other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before that
request is granted!
�  Assume that each process executes at a nonzero speed,!
�  however, no assumption concerning relative speed of the n

processes is made!

EECE 315 PPTSet6 – Process Synchronization 6-9!

Peterson’s Solution
  A classic software-based solution to the critical section problem is known as

Peterson’s solution. !
  This solution is not guaranteed to work on modern computers due to the

way load and store perform!
  Nevertheless a good algorithmic description of a solution!

  Assuming that the load and store instructions cannot be interrupted
(atomic), the Peterson’s solution can be used for two processes.!

  Two processes (P0 and P1) are required to share two variables:!
int turn;

Boolean flag[2];

  The variable turn indicates whose turn it is to enter the critical section. !
  The flag array is used to indicate if a process is ready to enter the

critical section. !
  flag[i] = true implies that process Pi is ready (i: 0 or 1) !

EECE 315 PPTSet6 – Process Synchronization 6-10!

!do {
 flag[i] = TRUE;

 turn = j;

 while (flag[j] && turn == j);

 critical section

 flag[i] = FALSE;

 remainder section

 } while (TRUE); !!

Algorithm for Process Pi
Note: j is equal to 1-i
 where i is 0 or 1

  This solution is correct, as we can show that it satisfies the three
requirements (page 208 of the 9th edition of the text or page 230 of the
Essential edition).!

entry
section

exit
section

EECE 315 PPTSet6 – Process Synchronization 6-11!

Lecture Outline

!
!
!

  Background!
  The Critical-Section Problem!
  Peterson’s Solution!

  Synchronization Hardware!

  Semaphores!

  Classic Problems of Synchronization!
!

EECE 315 PPTSet6 – Process Synchronization 6-12!

Synchronization Hardware
  In a uniprocessor system, the critical-section problem could be

solved if we could disable interrupts (e.g. in non-preemptive kernels) !
  since current sequence of instructions would execute without preemption!
  this approach is generally too inefficient on multiprocessor systems!

 Operating systems using this not broadly scalable!

  Modern computer systems provide special hardware instructions that
allow us to atomically !
  either test/modify the content of a word !
  or to swap the contents of two words!

 Atomic = as one non-interruptable unit!

  These instructions can be used to solve the critical-section problem in a
relatively simple manner.!

EECE 315 PPTSet6 – Process Synchronization 6-13!

Synchronization Hardware (cont)
  Many systems provide hardware support for critical section code!

  We can generally state that any solution to the critical-section requires
a simple tool, a lock. The mutex lock (mutual exclusion) is the
simplest of such tools.

!do {
 acquire lock

 critical section

 release lock

 remainder section

 } while (true);

  In the following we first look at a number of simple hardware instructions:!
  that are available on many systems !
  to show how they can be used effectively to solve the critical section

problem.!
  We abstract the main concepts behind these types of instructions by

describing TestAndSet() and Swap() instructions !

EECE 315 PPTSet6 – Process Synchronization 6-14!

TestAndSet() Instruction
  The TestAndSet() instruction, which is executed atomically, can be defined

as:!

  If a machine supports the TestAndSet() instruction atomically, then we can
implement mutual exclusion by declaring a Boolean variable lock, initialized
to false.!

boolean TestAndSet (boolean *target)

 {

 boolean rv = *target;

 *target = TRUE;

 return rv;

 }

 do {

 while (TestAndSet (&lock))
 ; /* do nothing */

 /* critical section here */

 lock = FALSE;

 /* remainder section here */

 } while (TRUE);

EECE 315 PPTSet6 – Process Synchronization 6-15!

Compare_and_Swap() Instruction
  The Swap() instruction, which is executed atomically, can be defined as:!

 void Compare_and_Swap (boolean *a, boolean *b, boolean *c)

 {

 boolean temp = *a;

 if (*a == *b)

 *c = temp;

 }

 do {

 while (Compare_and_swap(&lock,
 FALSE, TRUE)) {

 // Do nothing

 }

 /* critical section here */

 lock = FALSE;

 /* remainder section */

 } while (TRUE);

  Assume that each
process has a local
Boolean variable key

Q: Do these algorithms satisfy
the bounded-waiting
requirement?!

EECE 315 PPTSet6 – Process Synchronization 6-16!

Bounded-waiting Mutual Exclusion with TestAndSet()

 do {

 waiting[i] = TRUE;

 key = TRUE;

 while (waiting[i] && key)

 key = TestAndSet(&lock);

 waiting[i] = FALSE;

 /* critical section here */

 j = (i + 1) % n;

 while ((j != i) && !waiting[j])

 j = (j + 1) % n;

 if (j == i)

 lock = FALSE;

 else

 waiting[j] = FALSE;

 /* remainder section here */

 } while (TRUE);

  The following algorithm
based on TestAndSet()
satisfies all the critical-
section requirements:!

EECE 315 PPTSet6 – Process Synchronization 6-17!

Lecture Outline

!
!
!

  Background!
  The Critical-Section Problem!
  Peterson’s Solution!

  Synchronization Hardware!

  Semaphores!

  Classic Problems of Synchronization!
!

EECE 315 PPTSet6 – Process Synchronization 6-18!

Semaphore
  A semaphore is a less complicated and more practical synchronization tool!

  a semaphore S is an integer variable!
  S can be accessed only through two standard atomic operations: !

  wait() and signal()

 These two operations were originally called P() and V()

  There are two types of semaphores: counting and binary!
!

wait (S)

{

 while (S <= 0)

 ; /* no-op */

 S--;

}

!

signal (S)

{

 S++;

}

!

EECE 315 PPTSet6 – Process Synchronization 6-19!

Semaphore as General Synchronization Tool
  The value of a counting semaphore can range over an unrestricted domain!

  e.g. set to the # resources available!
  The value of a binary semaphore can range only between 0 and 1; !

  binary semaphores behave like (and on most systems are also known
as) mutex locks (mutual exclusion),!

  and are simpler to implement !
  Mutual exclusion can be implemented with binary semaphores as follows:!

  Semaphores can be used to solve various synchronization problems.!

Semaphore mutex; /* initialized to 1 */

do {

 wait (mutex);

 /* critical Section here */

 signal (mutex);

 /* remainder section here */

} while (TRUE);

EECE 315 PPTSet6 – Process Synchronization 6-20!

Semaphore Implementation
  All modifications to the semaphore in the wait() and signal() operations

must be executed indivisibly!
  i.e. when one process modifies the semaphore value, no other process

can simultaneously modify the same semaphore value.!

  The main disadvantage of the previous semaphore definition is that it
requires busy waiting.!
  While a process is in its critical section, any other process that tries to

enter its critical section must loop continuously.!
 This type of semaphore is also called a spinlock because the

process spins while waiting for the lock.!
  This continuous looping is clearly a problem as it wastes CPU cycles

that some other process might be able to use productively.!
 On the other hand, spinlocks do have an advantage in that no

context switch is required when the process must wait on a lock,!
 so, spinlocks are useful, when locks are expected to be held for

short times.!

EECE 315 PPTSet6 – Process Synchronization 6-21!

Semaphore Implementation with no Busy waiting

  To overcome the need for busy waiting, we can modify wait and signal
operations.!
  Rather than engaging in busy waiting, the process can block itself.!

  With each semaphore there is an associated waiting queue. Each entry
has two data items:!
  a value (of type integer)!
  a pointer to next record in the list!
!
!

  The following two operations (provided by OS as basic system calls) are
used:!
  block – The block() operation suspends the process invoking the

operation and places it on the appropriate waiting queue.!
  wakeup – The wakeup() operation removes one of processes in the

waiting queue and place it in the ready queue (i.e. resuming the
operation of a blocked process).!

 !

typedef struct{

 int value;

 struct process *list;

}semaphore;

EECE 315 PPTSet6 – Process Synchronization 6-22!

Implementation with no Busy waiting (cont)

  Implementation of wait():!
 wait(semaphore *S)
 {
 S->value--;
 if (S->value < 0) {
 /* add this process to S->list here */
 block();
 }
 }

  Implementation of signal():!

 signal(semaphore *S)
 {
 S->value++;
 if (S->value <= 0) {
 /* remove a process P from S->list here */
 wakeup(P);
 }
 }

EECE 315 PPTSet6 – Process Synchronization 6-23!

Problems with Semaphores

  Some possible incorrect use of semaphore operations:!
  incorrect order !

 e.g. in this example, mutual exclusion is violated!

  incorrect use !
 e.g. in this example, deadlock will occur!

  Omitting wait() or signal() (or both)!
 either mutual exclusion is violated or deadlock

will occur!

signal (mutex)
…

wait (mutex)

wait (mutex)

 …

wait (mutex)

  Semaphores provide a convenient and efficient mechanism for process
synchronization, though using them incorrectly can result in timing errors
that are difficult to detect!
  these errors happen only if some particular execution sequence take

place!

EECE 315 PPTSet6 – Process Synchronization 6-24!

Deadlock and Starvation
  Deadlock – two or more processes are waiting indefinitely for an event that

can be caused by only one of the waiting processes!
  e.g. let S and Q be two semaphores initialized to 1!

! ! P0 ! P1!

! ! wait (S); ! wait (Q);!
! ! wait (Q); ! wait (S);!

 ! !. ! .!
! !. ! .!
! !. ! .!
! ! signal (S); ! signal (Q);!
! ! signal (Q); ! signal (S);!

  Starvation (indefinite blocking) – A process may never be removed from the
semaphore queue in which it is suspended!

EECE 315 PPTSet6 – Process Synchronization 6-25!

Deadlock (cont)
  In a deadlock, processes never finish executing, and system resources are

possibly tied up, preventing other jobs from starting.!

  A deadlock situation can arise if these four conditions hold simultaneously:!
  Mutual exclusion: only one process at a time can use a resource!
  Hold and wait: a process holding at least one resource is waiting to

acquire additional resources held by other processes!
  No preemption: a resource can be released only voluntarily by the

process holding it, after that process has completed its task!
  Circular wait: there exists a set {P0, P1, …, Pn} of waiting processes such

that P0 is waiting for a resource that is held by P1, P1 is waiting for a
resource that is held by P2, …, Pn–1 is waiting for a resource that is held by
Pn, and Pn is waiting for a resource that is held by P0.!

R0

P0 P1

R1

EECE 315 PPTSet6 – Process Synchronization 6-26!

Critical Section Problem in Kernel Code
  At any given point of time, many kernel-mode processes may be active in

the OS. !
  As a result, the code implementing an OS (kernel code) is subject to

several possible race conditions.!

  Two general approaches are used to handle critical sections in operating
systems: depending on whether the kernel is preemptive or nonpreemptive!
  Obviously, a nonpreemptive kernel is essentially free from race

conditions on kernel data structures, as only one process is active in the
kernel at a time (and is not preempted).!

  Preemptive kernel though must be carefully designed to ensure shared
kernel data is free from race conditions. This is specially difficult to
design for SMP architectures. !

Q: Why, then, would we favor a preemptive kernel over a nonpreemptive one?!
  a preemptive kernel is more responsive, and!
  a preemptive kernel is more suitable for real-time programming!

EECE 315 PPTSet6 – Process Synchronization 6-27!

Lecture Outline

!
!
!

  Background!
  The Critical-Section Problem!
  Peterson’s Solution!

  Synchronization Hardware!

  Semaphores!

  Classic Problems of Synchronization!
!

EECE 315 PPTSet6 – Process Synchronization 6-28!

Classical Problems of Synchronization
  We are going to discuss a number of synchronization problems

that are used for testing newly proposed synchronization schemes:!

  Bounded-Buffer Problem!

  Readers and Writers Problem!

  Dining-Philosophers Problem!

EECE 315 PPTSet6 – Process Synchronization 6-29!

Bounded-Buffer Problem
  As discussed before, the buffer has N buffers, each can hold one item!
  Semaphore mutex, provides mutual exclusion (initialized to the value 1)!
  Semaphore full, counts the # of full buffers (initialized to the value 0)!
  Semaphore empty, counts the # of empty buffers (initialized to the value N)!

The structure of the producer process:!
do {

 /* produce an item in nextp */

 wait (empty);

 wait (mutex);

 /* add the item to the buffer */

 signal (mutex);

 signal (full);

} while (TRUE);

The structure of the consumer process:!
do {

 wait (full);

 wait (mutex);

 /* remove an item from buffer to
 nextc */

 signal (mutex);

 signal (empty);

 /* consume the item in nextc */

} while (TRUE);

EECE 315 PPTSet6 – Process Synchronization 6-30!

Readers-Writers Problem
  Suppose a database is to be shared among a number of concurrent

processes!
  Readers are the processes that only read the data set; they do not

perform any updates!
  Writers are the processes that can both read and write  

!

  Readers-writers synchronization problem: allows multiple readers to read at
the same time. Only one single writer can access the shared data at the
same time!
  There are different variants of the problem. !
  e.g. the first problem requires that no reader be kept waiting unless a

writer already obtained permission to use the shared object. The
second problem requires that once a writer is waiting to access the
object, no new readers may start reading. !

  For the solution, the processes shared the following data structures:!
  Semaphore mutex (initialized to 1)!
  Semaphore wrt (initialized to 1)!
  Integer readcount (initialized to 0)!

Semaphore mutex, wrt;

int readcount;

EECE 315 PPTSet6 – Process Synchronization 6-31!

Readers-Writers Problem (Cont.)

The structure of a writer process: !
do {

 wait (wrt) ;

 /* writing is performed */

 signal (wrt) ;

} while (TRUE);

The structure of a reader process:!
do {
 wait (mutex) ;
 readcount++ ;
 if (readcount == 1)

 wait (wrt) ;
 signal (mutex) ;
 /* reading is performed */
 wait (mutex) ;
 readcount-- ;
 if (readcount == 0)

 signal (wrt) ;
 signal (mutex) ;
} while (TRUE);

Q: May the solution result in starvation?!
!

  The readers-writes problem and its solutions have been generalized to
provide reader-writer lock on some systems!

  The following code segment presents a solution to the readers-writers
problem (which one ? first or second ?) : !

EECE 315 PPTSet6 – Process Synchronization 6-32!

Dining-Philosophers Problem
  The dining philosophers problem is considered a classic synchronization

problem!
  Consider five philosophers, who spend their lives thinking and eating:!

  One simple solution starts with representing each chopstick with a
semaphore!
  Semaphore chopstick [5] (initialized to 1)!

bowl of
rice

single
chopstick

EECE 315 PPTSet6 – Process Synchronization 6-33!

Dining-Philosophers Problem: Solution
The structure of Philosopher i:!
do {

 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);

 /* eat */

 signal (chopstick[i]);

 signal (chopstick[(i + 1) % 5]);

 /* think */

} while (TRUE);

This solution will create a deadlock. To see this, assume that
 all philosophers simultaneously pick up their left/right forks

Each philosopher is waiting for their left/right forks, which are
being held by other philosophers who’re waiting too. So they’ll

starve (both literally and figuratively J

How do you avoid starvation ?

EECE 315 PPTSet6 – Process Synchronization 6-34!

Dining Philosophers: Solution

  The prior solution solves mutual exclusion, though it may create a deadlock.
To remedy that, we may:!
  allow at most four philosophers to be sitting simultaneously, or!
  allow a philosopher to pick up her chopsticks only if both chopsticks are

available, or !
  use an asymmetric solution!

  an odd philosopher picks up first her left chopstick and then her right
chopstick, whereas an even philosopher does the reverse!

EECE 315 PPTSet6 – Process Synchronization 6-35!

Lecture Outline

!
!
!

  Background!
  The Critical-Section Problem!
  Peterson’s Solution!

  Synchronization Hardware!

  Semaphores!

  Classic Problems of Synchronization!
!

