
EECE 315 – L1 1-1!

2 – System
Architecture

EECE 315 (101)

ECE – UBC
2013 W2

Acknowledgement: This set of slides is partly based on the PPTs provided by the Wiley’s companion website (including textbook
images, when not explicitly mentioned/referenced).

EECE 315 PPTSet1 - Introduction 1-2!

Outline

  What Operating Systems (OS) Do"

  Computer System"
  Architecture and Organization"

  Operating-System Structure and Operations"
  Process Management"
  Memory Management"
  Storage Management"

  OS Services and System Calls"

EECE 315 PPTSet1 - Introduction 1-3!

Name a Few Operating Systems?

Google Chrome OS!

Images sources: wikipedia.org
(Wikimedia Commons License)

EECE 315 PPTSet1 - Introduction 1-4!

So … What is an Operating System?
  Remember the projects you did in EECE 259"

  What did you need in your programs for a microcontroller?"
  Now think again …. What about the general-purpose computer or

the smart-phone you use on a daily basis?"

  An operating system is "
  a program "
  that acts as an intermediary between a user of a computer and the

computer hardware"
  and provides an environment in which a user can execute programs."

  Operating system goals:"
  Execute user programs and make solving user problems easier"
  Make the computer system convenient to use"
  Use the computer hardware in an efficient manner"

EECE 315 PPTSet1 - Introduction 1-5!

OS’s Role in the Overall Computer System

Four Components of a Computer System!

EECE 315 PPTSet1 - Introduction 1-6!

Operating System Definition

  User View: "
  User’s view varies according to the interface"
  OS is a control program !
  It controls execution of programs, prevents errors and

improper use of the computer"
  For a user in front of a"

 PC (single user): ease of use and performance"
  terminal of a mainframe (many users): maximize

resource utilization"
 network connected workstation: mixed of usability

and resource utilization"
 handheld (limited power, speed and interface):

personal usability and performance (e.g., battery life)"

OS!

EECE 315 PPTSet1 - Introduction 1-7!

Operating System Definition (cont)

  System View: "
  OS is a resource allocator!
  Manages the hardware and all resources (CPU,

Memory, I/O, …)"
  Decides between conflicting requests for

efficient and fair resource use"

OS!

  In general, no completely adequate, universally accepted
definition"

  “The one program running at all times on the computer” is the
kernel. Everything else is either a system program (ships with
the operating system) or an application program."

EECE 315 PPTSet1 - Introduction 1-8!

Outline

  What Operating Systems (OS) Do"

  Computer System"
  Architecture and Organization"

  Operating-System Structure and Operations"
  Process Management"
  Memory Management"
  Storage Management"

  OS Services and System Calls"

EECE 315 PPTSet1 - Introduction 1-9!

Computer Components

source: Stallings’"

EECE 315 PPTSet1 - Introduction 1-10!

Computer System Organization

  Computer-system operation"
  One or more CPUs, device controllers connect through common

bus providing access to shared memory"
  Concurrent execution of CPUs and devices competing for

memory cycles"

EECE 315 PPTSet1 - Introduction 1-11!

Computer-System Operation

  I/O devices and the CPU can execute concurrently"
  Each device controller is in charge of a particular device type"
  Each device controller has a local buffer"

  CPU moves data from/to main memory to/from local buffers"
  I/O is from the device to local buffer of controller"

  Device controller informs CPU that it has finished its operation by
causing an interrupt"

EECE 315 PPTSet1 - Introduction 1-12!

Common Functions of Interrupts
  An operating system is interrupt driven!

  hardware may trigger an interrupt at any time, e.g. by sending a signal
to the CPU"

  Software may trigger an interrupt by executing a special operation
called a system call!

  A trap (or exception) is a software-generated interrupt caused either by
an error or a user request!

source: Stallings’"

EECE 315 PPTSet1 - Introduction 1-13!

Common Functions of Interrupts (cont)
  Interrupt transfers control to the

interrupt service routine
generally, through the interrupt
vector, which contains the
addresses of all the service
routines"

  The operating system
preserves the state of the CPU
by storing registers and the
program counter"

  Interrupt architecture must save
the address of the interrupted
instruction"

  Incoming interrupts may be
disabled while another interrupt
is being processed to prevent a
lost interrupt"

EECE 315 PPTSet1 - Introduction 1-14!

Interrupt Handling
  When a CPU is interrupted, it stops what it is doing and

transfers execution to a fixed location. "
  Determines which type of interruption has occurred:"

  polling"
  vectored interrupt system"

  Separate segments of code determine what action should be
taken for each type of interrupt"

Interrupt Timeline:!

EECE 315 PPTSet1 - Introduction 1-15!

Computer Startup

  For a computer to start running (when powered up or
rebooted), it needs to have an initial program to run."

  bootstrap program is loaded at power-up or reboot"
  Typically stored in ROM or EEPROM, generally known as

firmware!
  Initializes all aspects of system (CPU registers, memory contents

and check, I/O, …)"
  Loads operating system kernel and starts its execution"

EECE 315 PPTSet1 - Introduction 1-16!

Storage-Device Hierarchy

EECE 315 PPTSet1 - Introduction 1-17!

Storage Hierarchy

  Storage systems organized in hierarchy based on:"
  Speed"
  Cost"
  Volatility"

  In the previous figure: the higher levels are expensive, but they
are fast."

  The design of a complete memory system must balance all
factors: "
  using only as much as expensive memory as necessary while

providing as much inexpensive, nonvolatile memory as possible."

EECE 315 PPTSet1 - Introduction 1-18!

Caching
  Caching "

  Information in use is copied from slower to faster storage
temporarily"

  an important principle, performed at many levels in a computer
(in hardware, operating system, software)"

  main memory can be viewed as a last cache for secondary
storage"

  Faster storage (cache) checked first to determine if
information is there"
  If it is, information used directly from the cache (fast)"
  If not, data copied to cache and used there"

  Cache is smaller than storage being cached"
  Cache management important design problem"
  Cache size and replacement policy"

"

EECE 315 PPTSet1 - Introduction 1-19!

Storage Structure
  Main memory is"

  the only large storage media that the CPU can access directly"
  too small (expensive, system limitations) to store all needed programs/

data"
  a volatile storage (i.e. loses its contents when the power is removed)"

  Secondary storage is "
  extension of main memory that provides large nonvolatile storage

capacity"

  Magnetic disks – rigid metal or glass platters covered with magnetic
recording material "
  Disk surface is logically divided into tracks, which are subdivided into

sectors!
  The disk controller determines the logical interaction between the

device and the computer "

EECE 315 PPTSet1 - Introduction 1-20!

Semiconductor Memory
  The top four levels of memory in the previous figure may be

constructed using semiconductor memory."

  Electronic disk can be either volatile or nonvolatile."
  large DRAM array (volatile)"
  Flash memory (nonvolatile)"
  NVRAM (DRAM with battery backup, nonvolatile)"

EECE 315 PPTSet1 - Introduction 1-21!

Performance of Various Levels of Storage
  Movement between levels of storage hierarchy can be explicit or

implicit"

  Example: migration of integer A from disk to register"

EECE 315 PPTSet1 - Introduction 1-22!

I/O Structure
  Storage is only one of many types of input/output devices."

  One purpose of OS is to hide peculiarities of hardware devices
from the user"

  A device controller "
  is in charge of a specific type of device and "
  is responsible for moving the data between the peripheral

devices that it controls and its local buffer storage."

EECE 315 PPTSet1 - Introduction 1-23!

I/O Structure (cont.)
  Typically, operating systems have a device driver for each device

controller."
  The device driver understands the device controller and

presents a uniform interface to it. "
  The device controller may inform the device driver via an

interrupt that it has finished its operation."

EECE 315 PPTSet1 - Introduction 1-24!

Direct Memory Access Structure

  The interrupt-driven I/O is fine for moving small amount of data,
but for bulk data transfer it can produce high overhead. DMA is
used to solve this problem."
  DMA is Used for high-speed I/O devices able to transmit

information at close to memory speeds"

  Device controller transfers
blocks of data from buffer
storage directly to main
memory without CPU
intervention"
  Only one interrupt is

generated per block,
rather than the one
interrupt per byte"

EECE 315 PPTSet1 - Introduction 1-25!

Computer-System Architecture
  Many systems use a single general-purpose processor (PDAs

through mainframes)"
  Most systems have special-purpose processors as well"
  Operating system may or may not manage these special-purpose

processors. (e.g. disk controller microprocessor and low-level
microprocessor built into the hardware)"

  Multiprocessors systems growing in use and importance"
  Have two or more processors in close communication, sharing the

computer bus and sometimes the clock, memory, and peripheral
devices."

  Have three advantages:"
  Increased throughput"
  Economy of scale"
  Increased reliability (graceful degradation or fault tolerance)"
"

EECE 315 PPTSet1 - Introduction 1-26!

Multiprocessing Architecture

  There are two types of multiple-processor systems:"
  Asymmetric Multiprocessing: "

  Each processor is assigned a specific task. A master processor
controls the system and other processors either look at the master
or have predefined tasks."

  Symmetric Multiprocessing (SMP):"
"

EECE 315 PPTSet1 - Introduction 1-27!

Multi-core Processors
  A recent trend in CPU design is to include multiple computing

cores in a single chip."
  Some Advantages:"

  On-chip communication is faster than between-chip communication."
  uses significantly less power than multiple single-core chips."
"

EECE 315 PPTSet1 - Introduction 1-28!

Outline

  What Operating Systems (OS) Do"

  Computer System"
  Architecture and Organization"

  Operating-System Structure and Operations"
  Process Management"
  Memory Management"
  Storage Management"

  OS Services and System Calls"

EECE 315 PPTSet1 - Introduction 1-29!

Operating System Structure

  Multiprogramming increases CPU utilization and is
needed for efficiency"
  Single user cannot keep CPU and I/O devices busy at

all times"
  Multiprogramming organizes jobs (code and data) so

CPU always has one to execute"

  The jobs are kept initially on the disk in the job pool."
  A subset of total jobs in the job pool is kept in memory"
  One job selected and run via job scheduling!

  When it has to wait (for I/O for example), OS switches to
another job"

  One important aspect of operating systems is the ability to multiprogram."

EECE 315 PPTSet1 - Introduction 1-30!

Operating System Structure (cont)
  Timesharing (multitasking) !

  is logical extension of multiprogramming "
  CPU switches jobs so frequently that users can interact with each job

while it is running, creating interactive computing"
  Response time should be < 1 second"

  Each user has at least one program executing in memory [process!
  If several jobs ready to run at the same time [ CPU scheduling!

  If processes don’t fit in memory, swapping moves them in and out to run"

  Virtual memory allows execution of processes not completely in memory"
  allows running programs that are larger than actual physical memory"
  frees programmers from concern over memory-storage limitations"

EECE 315 PPTSet1 - Introduction 1-31!

Dual-mode Operation
  In order to ensure the proper execution of the operating system, we must be

able to distinguish between the execution of OS code and user-defined
code."

  Dual-mode operation allows OS to protect itself and other system
components"
  User mode and kernel mode !

 When the computer is executing on behalf of a user application, the
system is in user mode."

 When a user application requests a service from the operating
system (system call), a transition from user to kernel mode must be
made. The system switches to user mode before passing control
back to a user program."

  Mode bit provided by hardware"
 Provides ability to distinguish when system is running user code or

kernel code"
 Some instructions designated as privileged, only executable in

kernel mode"

EECE 315 PPTSet1 - Introduction 1-32!

Transition from User to Kernel Mode

  We must ensure that the OS maintains control over the CPU."
  A timer can be used to prevent infinite loop / process hogging resources"

  Set interrupt after specific period"
  Operating system decrements counter"
  When counter zero generate an interrupt"
  Set up before scheduling process to regain control or terminate program

that exceeds allotted time"

EECE 315 PPTSet1 - Introduction 1-33!

Process Management
  A process is a program in execution. It is a unit of work within the

system. A program is a passive entity, process is an active entity."
  Process needs resources to accomplish its task"

  CPU, memory, I/O, files"
  These resources are either given to a process when created or while

running"
  When the process terminates, the OS reclaims any reusable resource"

  The operating system is responsible for the following activities in
connection with process management:"
  Creating and deleting both user and system processes"
  Suspending and resuming processes"
  Providing mechanisms for process synchronization"
  Providing mechanisms for process communication"
  Providing mechanisms for deadlock handling"

EECE 315 PPTSet1 - Introduction 1-34!

Memory Management
  Main memory is central to the operation of a computer system:"

  All data in memory before and after processing"
  All instructions in memory in order to execute"

  Memory management determines what is in memory and when"
  Optimizing CPU utilization and computer response to users"

  Memory management activities"
  Keeping track of which parts of memory are currently being used and by

whom"
  Deciding which processes (or parts thereof) and data to move into and

out of memory"
  Allocating and deallocating memory space as needed"
"

EECE 315 PPTSet1 - Introduction 1-35!

Storage Management
  The OS abstracts from the physical properties of its storage

devices to define a logical storage unit, the file. "

  Each medium is controlled by device (i.e., disk drive, tape drive)"
  Varying properties include access speed, capacity, data-transfer rate,

access method (sequential or random)"

  File-System management"
  Files usually organized into directories"
  Access control on most systems to determine who can access what"
  OS activities include"

 Creating and deleting files and directories"
 Primitives to manipulate files and directories"
 Mapping files onto secondary storage"
 Backup files onto stable (non-volatile) storage media"

EECE 315 PPTSet1 - Introduction 1-36!

Mass-Storage Management
  Disks are used as the principal on-line storage medium for both

programs and data"
  That does not fit in main memory or that must be kept for a “long”

period of time"
  Proper management is of central importance"

  OS activities in connection with disk management "
  Free-space management"
  Storage allocation"
  Disk scheduling"

  Some storage need not be fast"
  Tertiary storage includes optical storage, magnetic tape"
  Still must be managed"
  Varies between WORM (write-once, read-many-times) and RW (read-write)"

EECE 315 PPTSet1 - Introduction 1-37!

Protection and Security
  If a computer system has multiple users and allows the concurrent

execution of multiple processes, then access to data must be
regulated."
  Protection – any mechanism for controlling access of processes or users

to resources defined by the OS"
  Security – defense of the system against internal and external attacks"

  Huge range, including denial-of-service, worms, viruses, identity theft, theft of
service"

  Systems generally first distinguish among users, to determine who
can do what"
  User identities (user IDs, security IDs) include name and associated number,

one per user"
  User ID then associated with all files, processes of that user to determine

access control"
  Group identifier (group ID) allows set of users to be defined and controls

managed, then also associated with each process, file"
  Privilege escalation allows user to change to effective ID with more rights"

EECE 315 PPTSet1 - Introduction 1-38!

Outline

  What Operating Systems (OS) Do"

  Computer System"
  Architecture and Organization"

  Operating-System Structure and Operations"
  Process Management"
  Memory Management"
  Storage Management"

  OS Services and System Calls"

EECE 315 PPTSet1 - Introduction 1-39!

A View of Operating System Services
  As an environment for the execution of programs, an OS provides

certain services to the programs and the users of those programs."

EECE 315 PPTSet1 - Introduction 1-40!

Operating System Services
  One set of OS services provides functions that are helpful to the user:"

  User interface "
 Command-Line (CLI), "
 Graphical User Interface (GUI), "
 and also Batch"

  Program execution"
  loading a program into memory and to run that program, "
 ending execution (either normally or abnormally (indicating error))"

  I/O operations - A running program may require I/O, which may
involve a file or an I/O device "

  File-system manipulation"
 Programs need to read and write files and directories, create and

delete them, search them, list file Information, permission
management."

EECE 315 PPTSet1 - Introduction 1-41!

Operating System Services (Cont)
  (Cont):"

  Communications – Processes may exchange information, on the
same computer or between computers over a network"
 Communications may be via "

–  shared memory or "
–  message passing (packets moved by the OS)"

  Error detection – OS needs to be constantly aware of possible
errors"
 May occur in the CPU and memory hardware, in I/O devices, in user

program"
 For each type of error, OS should take the appropriate action to

ensure correct and consistent computing"
 Debugging facilities can greatly enhance the user’s and

programmer’s abilities to efficiently use the system"

EECE 315 PPTSet1 - Introduction 1-42!

Operating System Services (Cont)
  Another set of OS functions exists not for helping the user but

rather to ensuring the efficient operation of the system itself."

  Resource allocation !
 When multiple users or multiple jobs running concurrently,

resources must be allocated to each of them"
 Many types of resources are managed by OS."

–  e.g. CPU scheduling or request/release to allocate an I/O
device"

  Accounting "
 To keep track of which users use how much and what kinds of

computer resources"

EECE 315 PPTSet1 - Introduction 1-43!

Operating System Services (Cont)
  (Cont):"

  Protection and security - The owners of information may want to
control use of that information, or concurrent processes should
not interfere with each other"
  If a system is to be protected and secure, precautions must be

instituted throughout it. "
–  A chain is only as strong as its weakest link."

 Protection involves ensuring that all access to system resources is
controlled"

 Security of the system from outsiders requires user authentication,
extends to defending external I/O devices from invalid access
attempts"

EECE 315 PPTSet1 - Introduction 1-44!

System Calls
  System calls provide programming interface to the services provided

by the OS"
  Typically available as routines written in a C or C++ (a high level

language and maybe some assembly)"

  Even a simple program may make heavy use of OS services."
  e.g. see the example in the next slide"

Example - The steps in making the
system call read():

 read (fd, buffer, nbytes)

Source: Tanenbaum

EECE 315 PPTSet1 - Introduction 1-45!

Example of System Calls
  The following image shows the sequence of system calls that are executed

in order to copy the contents of one file to another file."

Note: the system-call names used throughout the textbook/lecture
notes are generic, unless specified.

EECE 315 PPTSet1 - Introduction 1-46!

Application Program Interface (API)
  Most programmers never see the previously mentioned level of detail

involved with the direct use of system calls."
  Typically, application developers design programs according to an

Application Programming Interface (API) rather than a direct system
call use"
  The API specifies a set of functions available"
  Why use APIs rather than system calls?"

 For many reasons, including 1) portability and 2) that system calls are
usually more detailed and difficult to work with than the API."

  Three most common APIs are "
  Win32 API for Windows (Win64),"
  POSIX API for POSIX-based systems (UNIX, Linux, and Mac OS

X)"
  Java API for the Java virtual machine (JVM)"

EECE 315 PPTSet1 - Introduction 1-47!

Standard C Library Example
  The standard C library provides a portion of the system call interface for

many versions of UNIX and Linux. "
  e.g. a C program invoking printf() library call, which calls write()

system call"

EECE 315 PPTSet1 - Introduction 1-48!

System Call Implementation
  The caller needs to know nothing about how the system call is

implemented"
  Just needs to obey API and understand what OS will do as a result call"
  Most details of OS interface hidden from programmer by API "

 Managed by run-time support library (set of functions built into
libraries included with compiler)"

  The system call interface invokes intended system call in OS kernel
and returns status of the system call and any return values"

  Typically, a number associated with each system call"
  System-call interface maintains a table indexed according to these

numbers"

EECE 315 PPTSet1 - Introduction 1-49!

API – System Call – OS Relationship

EECE 315 PPTSet1 - Introduction 1-50!

Passing Parameters
  When a system call occurs, often more information is required

than simply the identity of the desired system call"
  e.g. to get input, we may need to specify the file or device to use as

the source"
  The exact type and amount of information vary according to the OS

and the call"

UNIX Windows

EECE 315 PPTSet1 - Introduction 1-51!

  Three general methods are used to pass parameters to the
OS!

1.  pass the parameters in registers (simplest)!
2.  Parameters stored in a block, or table, in memory, and address of block

passed as a parameter in a register (used in Linux and Solaris)!

3.  Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system!

  In the first method, in some cases there may be more parameters than
registers. However, the last two methods (block or stack) do not limit the

number or length of parameters being passed. !

Passing Parameters (cont)

EECE 315 PPTSet1 - Introduction 1-52!

Types of System Calls
  System calls can be grouped roughly into six major categories:"

1)

2)

3)

4)

5)

6)

Examples

EECE 315 PPTSet1 - Introduction 1-53!

MS-DOS Execution
"
"
"
"
"
"
"
"
"
"
"

(a) At system startup (b) running a program!
!

  Let’s take a look at two variations of process and job control:
MS-DOS (single-tasking) and Free BSD (multitasking) !

  MS-DOS command
interpreter is invoked at the

startup!
  To run a program,!
  loads it into memory, writing

over most of itself to give the
program as much memory as

possible.!
  sets the instruction pointer to

the first instruction of the
program!

  After the program
terminates, the command

interpreter resumes.!

EECE 315 PPTSet1 - Introduction 1-54!

FreeBSD Running Multiple Programs
  The shell is run at the login!

  Since it is multitasking, the command
interpreter may continue running while

another program is executed!

  To execute a program, it creates a new
process (fork()) and then the selected

program is loaded into memory!
  waits for the program or runs it “in

the background”!
  In the meanwhile, the user is free to

ask the shell to run other programs!

  When the process is done, it executes
an exit() system call to terminate!

EECE 315 PPTSet1 - Introduction 1-55!

Outline

  What Operating Systems (OS) Do"

  Computer System"
  Architecture and Organization"

  Operating-System Structure and Operations"
  Process Management"
  Memory Management"
  Storage Management"

  OS Services and System Calls"

