
EECE 315 – L5 5-1!

5 - CPU Scheduling

EECE 315 (101)
ECE – UBC

2013 W2

Acknowledgement: This set of slides is partly based on the PPTs provided by the Wiley’s companion website (including textbook
images, when not explicitly mentioned/referenced).

EECE 315 PPTSet5 – Scheduling 5-2!

Lecture Outline
  Basic Concepts: Scheduling Criteria!

  Scheduling Algorithms "

  Thread Scheduling"

"

EECE 315 PPTSet5 – Scheduling 5-3!

  The CPU is one of the primary computer resources and should be
scheduled before use"
  To select one process from among the processes in memory that are

ready to execute, and allocate the CPU to it"

  The success of CPU scheduling depends on the observed property of
processes"

  In our daily life, we are mostly used to first-in first-out queues (FIFO)."
 The above ready queue though is not necessarily FIFO."

"

CPU Scheduler

ready queue"

P1"P3"P2"

CPU"

Bu
s

st
op
"

Sch"

EECE 315 PPTSet5 – Scheduling 5-4!

Process Partition into Smaller CPU Bursts

p11! p12! p13!

p13!p12!p11!

process1! ∑=
k

iki Pprocess :generalIn

Note that each process (here process1) is generally divided into a number of
CPU bursts."

EECE 315 PPTSet5 – Scheduling 5-5!

Scheduling Criteria
  Many criteria have been used for comparing scheduling algorithms."

  Waiting time – amount of time a process has been waiting in the ready
queue"

  Turnaround time – amount of time to execute a particular process
(includes waiting time in memory and ready queue, executing in CPU
and doing IO)"

  Response time – amount of time it takes from when a request was
submitted until the first response is produced, not output"

  CPU utilization – keep the CPU as busy as possible"

  Throughput – # of processes that complete their execution per time
unit"

EECE 315 PPTSet5 – Scheduling 5-6!

Scheduling Criteria - Example
Assume a CPU burst P3 to be scheduled:"

  Waiting time"

  Turnaround time"

  Response time"

Scheduled"

Scheduled" Completion"

Scheduled" 1st response"

arrives"

waiting"

waiting" in CPU, I/O, ..."

waiting"

P1"P3" Sch"

EECE 315 PPTSet5 – Scheduling 5-7!

Scheduling Algorithm Optimization Criteria
  We usually aim to minimize or maximize a criterion for optimization."

  choosing the best element from a set of available alternatives"
  aim to minimize "

  turnaround time "
 waiting time "
  response time"

  aim to maximize"
 CPU utilization"
  throughput"

  In most cases, we optimize an average measure. "
  However, under many other circumstances, the optimization may be on

other statistical measures, such as minimum or maximum values, or
variance."

EECE 315 PPTSet5 – Scheduling 5-8!

Lecture Outline
  Basic Concepts: Scheduling Criteria"

  Scheduling Algorithms !

  Thread Scheduling"

EECE 315 PPTSet5 – Scheduling 5-9!

Scheduling Algorithms
  There are many different scheduling algorithms."

  In the following slides, we are going to study:"

  First-Come, First-Served (FCFS)"

  Shortest-Job-First (SJF)"

  Priority Scheduling"

  Round Robin (RR)"

EECE 315 PPTSet5 – Scheduling 5-10!

Bu
s

st
op
"

  In this scheme, the process that requests the CPU first is allocated the CPU
first."

  Example: Suppose that CPU bursts of processes arrive in the order: P1, P2,
P3  

""
"
"
"
"

  A Gantt chart is a bar chart that illustrates a particular schedule, including
start and finish times."
  The Gantt Chart for the above example schedule is:"

"

  The waiting time for P1 is 0, for P2 is 24, and for P3 is 27. "
  Thus the average waiting time is equal to "

  (0 + 24 + 27)/3 = 17"

First-Come, First-Served (FCFS) Scheduling

P1" P2" P3"

24" 27" 30"0"

! !Process !Burst Time!
" " P1 "24"
" " P2 "3"
" " P3 ! 3 !

queue"
P1"P2"P3" Sch"

EECE 315 PPTSet5 – Scheduling 5-11!

FCFS Scheduling (Cont)

P1"P3"P2"

6"3" 30"0"

  Now let’s consider another scenario; suppose that this time the processes
arrive in the following order:"
" " P2 , P3 , P1 "

  The Gantt chart for the schedule is changed to: 
"

  Thus the waiting time for P1 is 6, for P2 is 0, and for P3 is 3.!
  The average waiting time is now: (6 + 0 + 3)/3 = 3"
  which is much better than the previous case"

  The above two scenarios show that the average time under FCFS policy is
generally not minimal and may vary substantially."
  Convoy effect: all other short processes should wait for a long process

to get off the CPU"

" "Process "Burst Time"
" " P1 "24"
" " P2 "3"
" " P3 ! 3 !

EECE 315 PPTSet5 – Scheduling 5-12!

Shortest-Job-First (SJF) Scheduling
  A different approach to CPU scheduling is the shortest-job-first scheduling

algorithm. We start with non-preemptive SJF."

  This algorithm associates with each process the length of its next CPU
burst. "

  When the CPU is available, it is assigned to the process with the
smallest next CPU burst"

  Probably a more appropriate term for this scheduling method would be the
shortest-next-CPU-burst algorithm."

ready queue"

P1"P3"P2"

CPU"

Sch"

EECE 315 PPTSet5 – Scheduling 5-13!

SJF Scheduling (cont)
  Let’s look at an example:"

  The Gantt chart for this SJF scheduling is:"

  The average waiting time is now: (3 + 16 + 9 + 0) / 4 = 7"

  SJF is optimal, in that it gives the minimum average waiting time for a given
set of processes"
  The real difficulty is knowing the length of the next CPU request"

P4" P3"P1"

3" 16"0" 9"

P2"

24"

" "Process !Burst Time!
" " P1 "6"
" " P2 !8"
" " P3 "7"
" " P4 "3"

EECE 315 PPTSet5 – Scheduling 5-14!

Determining Length of Next CPU Burst
  A process consists of a number of CPU bursts. We may not know

the length of the next CPU burst (which is to be scheduled), but we
may be able to predict its value."
  With short-term CPU scheduling, we can try to approximate SJF

scheduling"
  In order to compute an approximation of the length of the next CPU

burst, we use the length of the previous CPU bursts (which is
known), using exponential averaging"
"
"

:Define 4.
10 , parameter a 3.

burst CPUnext for the valuepredicted 2.
burst CPU oflength actual 1.

1

≤≤

=

=

+

αα

τ n

th
n nt

() .1 1 nnn t ταατ −+=+

Fig 5.3"

1/2 =α

EECE 315 PPTSet5 – Scheduling 5-15!

Examples of Exponential Averaging
  The parameter, α, controls the relative weight of recent and past history in

our prediction.  
"

  Let’s consider the following two extremes:"
  if α = 0"

  τn+1 = τn"

 Recent history does not count"
  if α = 1"

  τn+1 = tn"
 Only the actual last CPU burst counts"

  If we expand the formula, we get:"

τn+1 = α tn+(1 - α)α tn-1 + … +(1 - α)j α tn-j + …+(1 - α)n +1 τ0  
"

  Since both α and (1 - α) are less than or equal to 1, each successive
term has less weight than its predecessor"

())1 (1 nnn t ταατ −+=+

EECE 315 PPTSet5 – Scheduling 5-16!

Preemptive SJF (SRTF)
  An SJF algorithm can be preemptive, that is, it will preempt a currently

executing process. The preemptive SJF is called shortest-remaining-time-
first."

  Consider the following example:"

  The Gantt chart for this SJF scheduling is:"

  The average waiting time is now: [(10-1)+(1-1)+(17-2)+ (5-3)]/4 = 6.5"
"

" "Process !Arrival Time !Burst Time!
" " P1 "0 "8"
" " P2 !1 "4"
" " P3 "2 "9"
" " P4 "3 "5"

p1" p2" p4" p1" p3"

0" 1" 5" 10" 17" 26"

Note: So far in all examples the
arrival time values were not
considered. In this example, we are
considering different arrival times."

EECE 315 PPTSet5 – Scheduling 5-17!

Priority Scheduling
  In the priority scheduling, "

  a priority number (integer) is associated with each process"
 usually: smallest integer ≡ highest priority"

  and the CPU is allocated to the process with the highest priority "

  The SFJ is a special case of the general priority scheduling algorithm."
  In SJF, the priority is the predicted next CPU burst time"

  A major problem with this scheduling algorithm is the possibility of indefinite
blocking or Starvation !
  This algorithm may leave some low priority processes waiting indefinitely"
  A solution to the above problem is the aging technique:"

 Aging is the technique of gradually increasing the priority of processes
that are waiting in the system as time progresses"

EECE 315 PPTSet5 – Scheduling 5-18!

Priority Scheduling Example
  Consider the following example:"

  The Gantt chart for this priority scheduling is:"

  The average waiting time is now: (6+0+16+18+1)/5 = 8.2"
"

" "Process !Priority !Burst Time!
" " P1 "3 "10"
" " P2 !1 "1"
" " P3 "4 "2"
" " P4 "5 "1"
" " P5 "2 "5"

 "

p2" p5" p4"p1" p3"

0" 1" 6" 16" 18" 19"

EECE 315 PPTSet5 – Scheduling 5-19!

Round Robin (RR) Scheduling
  The Round Robin scheduling algorithm is designed especially for time-

sharing systems."
  Each process gets a small unit of CPU time (called time quantum or time

slice), usually with a length of 10 to 100 milliseconds. "
  After this time has elapsed, the process is preempted and added to the

end of the ready queue."

  In RR, no process is allocated the CPU for more than 1 time quantum in a
row (unless it is the only runnable process)."

  If there are n processes in the ready queue and the time quantum is q, then
each process gets 1/n of the CPU time in chunks of at most q time units at
once. No process waits more than (n-1)q time units."

ready queue"

P1"P2"P3"

CPU"

Sch"

EECE 315 PPTSet5 – Scheduling 5-20!

Example of RR
  Let’s take a look at an example: ""
"
""

"
""

"
"

  Assuming a time quantum of 4, the Gantt chart is:  
 
 
 
 
 
"

  The average waiting time is now:[(10-4)+4+7]/3 = 5.66"

  Typically, higher average turnaround than SJF, but better response!

P1" P2" P3" P1" P1" P1" P1" P1"

0" 4" 7" 10" 14" 18" 22" 26" 30"

" "Process " "Burst Time"
! ! P1 ! ! 24"
" " P2 ! ! 3"
" " P3 ! ! 3"

EECE 315 PPTSet5 – Scheduling 5-21!

Time Quantum and Context Switch Time
  The performance of the RR algorithm depends on"

  the size of the time quantum (q)"
 q very large ⇒ FIFO"
 q small ⇒ processor sharing "

–  This creates the appearance that each process is running on its
own CPU at 1/n the speed of the real processor "

 q must be large with respect to context switch, otherwise overhead is
too high"

  the context switching effect"

EECE 315 PPTSet5 – Scheduling 5-22!

Multilevel Queue
  In many situations, we prefer to classify the processes into different groups."

  For example, a common division is made between foreground and
background processes. "

  These two types have different scheduling requirements or priorities."

  A multi-level queue scheduling algorithm partitions the ready queue into
several separate queues. "

queue for foreground"

queue for background"

EECE 315 PPTSet5 – Scheduling 5-23!

Multilevel Queue Scheduling
  In multi-level queue scheduling, "

  each process is assigned to some queue, "
 based on some property of the process (e.g. priority, process type,

memory size, …)"
  each queue may have its own scheduling algorithm"

 e.g. for the two-level queue: "
–  the foreground queue might be scheduled by RR"
–  the background queue might be scheduled by FCFS"

  in addition, there must be scheduling among the queues"

foreground"

background"

RR"

FCFS"
CPU"

EECE 315 PPTSet5 – Scheduling 5-24!

  One possibility is to let each queue have absolute priority over lower-priority
queues."
  fixed priority scheduling; There is the possibility of starvation. "

 e.g., serve all from foreground then from background. "
  Another possibility is to time slice among the queues. "

  each queue gets a certain amount of CPU time which it can schedule
amongst its processes "
 e.g. 80% to foreground in RR and 20% to background in FCFS "

  Here is another example: "

Multilevel Queue Scheduling (cont)

EECE 315 PPTSet5 – Scheduling 5-25!

Multilevel Feedback Queue
  A process can move between the various queues; aging can be

implemented this way"
  Example:"

  New process enters Q0"

  Processes move based on a rule"
  Q1 is served only if Q0 empty"
  Q2 is served only if Q1 empty"

  Multilevel-feedback-queue scheduler is defined by the following parameters:"
  number of queues"
  scheduling algorithms for each queue"
  method used to determine which queue a process will enter when that

process needs service"
  method used to determine "

 when to upgrade a process"
 when to demote a process"

Q0!

Q1!

Q2!

EECE 315 PPTSet5 – Scheduling 5-26!

Example of Multilevel Feedback Queue
  Consider the pervious multilevel feedback queue with three queues, assume: "

  Scheduling:"
  A new process is put in queue Q0 which is served FCFS"

 When it gains CPU, job receives 8 milliseconds"
  If it does not finish in 8 milliseconds, job is preempted and moved to

queue Q1"
  At Q1 job is again served FCFS and receives 16 additional milliseconds"

  If it still does not complete, it is moved to queue Q2"

  Q0 : with a time quantum of 8 ms (like RR or
FCFS but with a time quantum and preemptive)"

  Q1 : with a time quantum of 16 ms (like RR or
FCFS but with a time quantum and preemptive)"

  Q2 : FCFS"
  A process that arrives for Q0 will preepmt a

process is Q1 or Q2. A process in Q1 will pre-
empt a process in Q2."

EECE 315 PPTSet5 – Scheduling 5-27!

Lecture Outline
  Basic Concepts: Scheduling Criteria"

  Scheduling Algorithms "

  Thread Scheduling!

EECE 315 PPTSet5 – Scheduling 5-28!

Thread Scheduling
  On operating systems that support threads, it is kernel-level threads,

not processes, that are being scheduled by the OS."
  User-level threads are managed by a thread library and the kernel

is not aware of them"
  To run on a CPU, user-level threads must be mapped to an

associated kernel-level thread"

  The terms process scheduling and thread scheduling are
sometimes used interchangeably."

  This mapping may be indirect and may use a lightweight process
(LWP)."

(from Ch 4)"

(from Ch 4)"

EECE 315 PPTSet5 – Scheduling 5-29!

Contention Scope
  On many-to-one and many-to-many models, thread library schedules user-

level threads to run on LWP;"
  this scheme is known as process-contention scope (PCS) since

scheduling competition is within the same process"

  To decide which kernel thread to schedule onto a CPU, the kernel uses
system-contention scope (SCS) "
  With SCS, competition for the CPU is among all threads in the system"
  Systems using one-to-one model, use SCS only (e.g. Windows) "

  Pthread API allows specifying either PCS or SCS during thread creation"
  PTHREAD_SCOPE_PROCESS schedules threads using PCS scheduling"
  PTHREAD_SCOPE_SYSTEM schedules threads using SCS scheduling."

EECE 315 PPTSet5 – Scheduling 5-30!

Lecture Outline
  Basic Concepts: Scheduling Criteria"

  Scheduling Algorithms "

  Thread Scheduling"

  Multicore Scheduling!

