
EECE 315 – L5 5-1!

5 - CPU Scheduling

EECE 315 (101)
ECE – UBC

2013 W2

Acknowledgement: This set of slides is partly based on the PPTs provided by the Wiley’s companion website (including textbook
images, when not explicitly mentioned/referenced).

EECE 315 PPTSet5 – Scheduling 5-2!

Lecture Outline
  Basic Concepts: Scheduling Criteria!

  Scheduling Algorithms "

  Thread Scheduling"

"

EECE 315 PPTSet5 – Scheduling 5-3!

  The CPU is one of the primary computer resources and should be
scheduled before use"
  To select one process from among the processes in memory that are

ready to execute, and allocate the CPU to it"

  The success of CPU scheduling depends on the observed property of
processes"

  In our daily life, we are mostly used to first-in first-out queues (FIFO)."
 The above ready queue though is not necessarily FIFO."

"

CPU Scheduler

ready queue"

P1"P3"P2"

CPU"

Bu
s

st
op
"

Sch"

EECE 315 PPTSet5 – Scheduling 5-4!

Process Partition into Smaller CPU Bursts

p11! p12! p13!

p13!p12!p11!

process1! ∑=
k

iki Pprocess :generalIn

Note that each process (here process1) is generally divided into a number of
CPU bursts."

EECE 315 PPTSet5 – Scheduling 5-5!

Scheduling Criteria
  Many criteria have been used for comparing scheduling algorithms."

  Waiting time – amount of time a process has been waiting in the ready
queue"

  Turnaround time – amount of time to execute a particular process
(includes waiting time in memory and ready queue, executing in CPU
and doing IO)"

  Response time – amount of time it takes from when a request was
submitted until the first response is produced, not output"

  CPU utilization – keep the CPU as busy as possible"

  Throughput – # of processes that complete their execution per time
unit"

EECE 315 PPTSet5 – Scheduling 5-6!

Scheduling Criteria - Example
Assume a CPU burst P3 to be scheduled:"

  Waiting time"

  Turnaround time"

  Response time"

Scheduled"

Scheduled" Completion"

Scheduled" 1st response"

arrives"

waiting"

waiting" in CPU, I/O, ..."

waiting"

P1"P3" Sch"

EECE 315 PPTSet5 – Scheduling 5-7!

Scheduling Algorithm Optimization Criteria
  We usually aim to minimize or maximize a criterion for optimization."

  choosing the best element from a set of available alternatives"
  aim to minimize "

  turnaround time "
 waiting time "
  response time"

  aim to maximize"
 CPU utilization"
  throughput"

  In most cases, we optimize an average measure. "
  However, under many other circumstances, the optimization may be on

other statistical measures, such as minimum or maximum values, or
variance."

EECE 315 PPTSet5 – Scheduling 5-8!

Lecture Outline
  Basic Concepts: Scheduling Criteria"

  Scheduling Algorithms !

  Thread Scheduling"

EECE 315 PPTSet5 – Scheduling 5-9!

Scheduling Algorithms
  There are many different scheduling algorithms."

  In the following slides, we are going to study:"

  First-Come, First-Served (FCFS)"

  Shortest-Job-First (SJF)"

  Priority Scheduling"

  Round Robin (RR)"

EECE 315 PPTSet5 – Scheduling 5-10!

Bu
s

st
op
"

  In this scheme, the process that requests the CPU first is allocated the CPU
first."

  Example: Suppose that CPU bursts of processes arrive in the order: P1, P2,
P3  

""
"
"
"
"

  A Gantt chart is a bar chart that illustrates a particular schedule, including
start and finish times."
  The Gantt Chart for the above example schedule is:"

"

  The waiting time for P1 is 0, for P2 is 24, and for P3 is 27. "
  Thus the average waiting time is equal to "

  (0 + 24 + 27)/3 = 17"

First-Come, First-Served (FCFS) Scheduling

P1" P2" P3"

24" 27" 30"0"

! !Process !Burst Time!
" " P1 "24"
" " P2 "3"
" " P3 ! 3 !

queue"
P1"P2"P3" Sch"

EECE 315 PPTSet5 – Scheduling 5-11!

FCFS Scheduling (Cont)

P1"P3"P2"

6"3" 30"0"

  Now let’s consider another scenario; suppose that this time the processes
arrive in the following order:"
" " P2 , P3 , P1 "

  The Gantt chart for the schedule is changed to: 
"

  Thus the waiting time for P1 is 6, for P2 is 0, and for P3 is 3.!
  The average waiting time is now: (6 + 0 + 3)/3 = 3"
  which is much better than the previous case"

  The above two scenarios show that the average time under FCFS policy is
generally not minimal and may vary substantially."
  Convoy effect: all other short processes should wait for a long process

to get off the CPU"

" "Process "Burst Time"
" " P1 "24"
" " P2 "3"
" " P3 ! 3 !

EECE 315 PPTSet5 – Scheduling 5-12!

Shortest-Job-First (SJF) Scheduling
  A different approach to CPU scheduling is the shortest-job-first scheduling

algorithm. We start with non-preemptive SJF."

  This algorithm associates with each process the length of its next CPU
burst. "

  When the CPU is available, it is assigned to the process with the
smallest next CPU burst"

  Probably a more appropriate term for this scheduling method would be the
shortest-next-CPU-burst algorithm."

ready queue"

P1"P3"P2"

CPU"

Sch"

EECE 315 PPTSet5 – Scheduling 5-13!

SJF Scheduling (cont)
  Let’s look at an example:"

  The Gantt chart for this SJF scheduling is:"

  The average waiting time is now: (3 + 16 + 9 + 0) / 4 = 7"

  SJF is optimal, in that it gives the minimum average waiting time for a given
set of processes"
  The real difficulty is knowing the length of the next CPU request"

P4" P3"P1"

3" 16"0" 9"

P2"

24"

" "Process !Burst Time!
" " P1 "6"
" " P2 !8"
" " P3 "7"
" " P4 "3"

EECE 315 PPTSet5 – Scheduling 5-14!

Determining Length of Next CPU Burst
  A process consists of a number of CPU bursts. We may not know

the length of the next CPU burst (which is to be scheduled), but we
may be able to predict its value."
  With short-term CPU scheduling, we can try to approximate SJF

scheduling"
  In order to compute an approximation of the length of the next CPU

burst, we use the length of the previous CPU bursts (which is
known), using exponential averaging"
"
"

:Define 4.
10 , parameter a 3.

burst CPUnext for the valuepredicted 2.
burst CPU oflength actual 1.

1

≤≤

=

=

+

αα

τ n

th
n nt

() .1 1 nnn t ταατ −+=+

Fig 5.3"

1/2 =α

EECE 315 PPTSet5 – Scheduling 5-15!

Examples of Exponential Averaging
  The parameter, α, controls the relative weight of recent and past history in

our prediction.  
"

  Let’s consider the following two extremes:"
  if α = 0"

  τn+1 = τn"

 Recent history does not count"
  if α = 1"

  τn+1 = tn"
 Only the actual last CPU burst counts"

  If we expand the formula, we get:"

τn+1 = α tn+(1 - α)α tn-1 + … +(1 - α)j α tn-j + …+(1 - α)n +1 τ0  
"

  Since both α and (1 - α) are less than or equal to 1, each successive
term has less weight than its predecessor"

())1 (1 nnn t ταατ −+=+

EECE 315 PPTSet5 – Scheduling 5-16!

Preemptive SJF (SRTF)
  An SJF algorithm can be preemptive, that is, it will preempt a currently

executing process. The preemptive SJF is called shortest-remaining-time-
first."

  Consider the following example:"

  The Gantt chart for this SJF scheduling is:"

  The average waiting time is now: [(10-1)+(1-1)+(17-2)+ (5-3)]/4 = 6.5"
"

" "Process !Arrival Time !Burst Time!
" " P1 "0 "8"
" " P2 !1 "4"
" " P3 "2 "9"
" " P4 "3 "5"

p1" p2" p4" p1" p3"

0" 1" 5" 10" 17" 26"

Note: So far in all examples the
arrival time values were not
considered. In this example, we are
considering different arrival times."

EECE 315 PPTSet5 – Scheduling 5-17!

Priority Scheduling
  In the priority scheduling, "

  a priority number (integer) is associated with each process"
 usually: smallest integer ≡ highest priority"

  and the CPU is allocated to the process with the highest priority "

  The SFJ is a special case of the general priority scheduling algorithm."
  In SJF, the priority is the predicted next CPU burst time"

  A major problem with this scheduling algorithm is the possibility of indefinite
blocking or Starvation !
  This algorithm may leave some low priority processes waiting indefinitely"
  A solution to the above problem is the aging technique:"

 Aging is the technique of gradually increasing the priority of processes
that are waiting in the system as time progresses"

EECE 315 PPTSet5 – Scheduling 5-18!

Priority Scheduling Example
  Consider the following example:"

  The Gantt chart for this priority scheduling is:"

  The average waiting time is now: (6+0+16+18+1)/5 = 8.2"
"

" "Process !Priority !Burst Time!
" " P1 "3 "10"
" " P2 !1 "1"
" " P3 "4 "2"
" " P4 "5 "1"
" " P5 "2 "5"

 "

p2" p5" p4"p1" p3"

0" 1" 6" 16" 18" 19"

EECE 315 PPTSet5 – Scheduling 5-19!

Round Robin (RR) Scheduling
  The Round Robin scheduling algorithm is designed especially for time-

sharing systems."
  Each process gets a small unit of CPU time (called time quantum or time

slice), usually with a length of 10 to 100 milliseconds. "
  After this time has elapsed, the process is preempted and added to the

end of the ready queue."

  In RR, no process is allocated the CPU for more than 1 time quantum in a
row (unless it is the only runnable process)."

  If there are n processes in the ready queue and the time quantum is q, then
each process gets 1/n of the CPU time in chunks of at most q time units at
once. No process waits more than (n-1)q time units."

ready queue"

P1"P2"P3"

CPU"

Sch"

EECE 315 PPTSet5 – Scheduling 5-20!

Example of RR
  Let’s take a look at an example: ""
"
""

"
""

"
"

  Assuming a time quantum of 4, the Gantt chart is:  
 
 
 
 
 
"

  The average waiting time is now:[(10-4)+4+7]/3 = 5.66"

  Typically, higher average turnaround than SJF, but better response!

P1" P2" P3" P1" P1" P1" P1" P1"

0" 4" 7" 10" 14" 18" 22" 26" 30"

" "Process " "Burst Time"
! ! P1 ! ! 24"
" " P2 ! ! 3"
" " P3 ! ! 3"

EECE 315 PPTSet5 – Scheduling 5-21!

Time Quantum and Context Switch Time
  The performance of the RR algorithm depends on"

  the size of the time quantum (q)"
 q very large ⇒ FIFO"
 q small ⇒ processor sharing "

–  This creates the appearance that each process is running on its
own CPU at 1/n the speed of the real processor "

 q must be large with respect to context switch, otherwise overhead is
too high"

  the context switching effect"

EECE 315 PPTSet5 – Scheduling 5-22!

Multilevel Queue
  In many situations, we prefer to classify the processes into different groups."

  For example, a common division is made between foreground and
background processes. "

  These two types have different scheduling requirements or priorities."

  A multi-level queue scheduling algorithm partitions the ready queue into
several separate queues. "

queue for foreground"

queue for background"

EECE 315 PPTSet5 – Scheduling 5-23!

Multilevel Queue Scheduling
  In multi-level queue scheduling, "

  each process is assigned to some queue, "
 based on some property of the process (e.g. priority, process type,

memory size, …)"
  each queue may have its own scheduling algorithm"

 e.g. for the two-level queue: "
–  the foreground queue might be scheduled by RR"
–  the background queue might be scheduled by FCFS"

  in addition, there must be scheduling among the queues"

foreground"

background"

RR"

FCFS"
CPU"

EECE 315 PPTSet5 – Scheduling 5-24!

  One possibility is to let each queue have absolute priority over lower-priority
queues."
  fixed priority scheduling; There is the possibility of starvation. "

 e.g., serve all from foreground then from background. "
  Another possibility is to time slice among the queues. "

  each queue gets a certain amount of CPU time which it can schedule
amongst its processes "
 e.g. 80% to foreground in RR and 20% to background in FCFS "

  Here is another example: "

Multilevel Queue Scheduling (cont)

EECE 315 PPTSet5 – Scheduling 5-25!

Multilevel Feedback Queue
  A process can move between the various queues; aging can be

implemented this way"
  Example:"

  New process enters Q0"

  Processes move based on a rule"
  Q1 is served only if Q0 empty"
  Q2 is served only if Q1 empty"

  Multilevel-feedback-queue scheduler is defined by the following parameters:"
  number of queues"
  scheduling algorithms for each queue"
  method used to determine which queue a process will enter when that

process needs service"
  method used to determine "

 when to upgrade a process"
 when to demote a process"

Q0!

Q1!

Q2!

EECE 315 PPTSet5 – Scheduling 5-26!

Example of Multilevel Feedback Queue
  Consider the pervious multilevel feedback queue with three queues, assume: "

  Scheduling:"
  A new process is put in queue Q0 which is served FCFS"

 When it gains CPU, job receives 8 milliseconds"
  If it does not finish in 8 milliseconds, job is preempted and moved to

queue Q1"
  At Q1 job is again served FCFS and receives 16 additional milliseconds"

  If it still does not complete, it is moved to queue Q2"

  Q0 : with a time quantum of 8 ms (like RR or
FCFS but with a time quantum and preemptive)"

  Q1 : with a time quantum of 16 ms (like RR or
FCFS but with a time quantum and preemptive)"

  Q2 : FCFS"
  A process that arrives for Q0 will preepmt a

process is Q1 or Q2. A process in Q1 will pre-
empt a process in Q2."

EECE 315 PPTSet5 – Scheduling 5-27!

Lecture Outline
  Basic Concepts: Scheduling Criteria"

  Scheduling Algorithms "

  Thread Scheduling!

EECE 315 PPTSet5 – Scheduling 5-28!

Thread Scheduling
  On operating systems that support threads, it is kernel-level threads,

not processes, that are being scheduled by the OS."
  User-level threads are managed by a thread library and the kernel

is not aware of them"
  To run on a CPU, user-level threads must be mapped to an

associated kernel-level thread"

  The terms process scheduling and thread scheduling are
sometimes used interchangeably."

  This mapping may be indirect and may use a lightweight process
(LWP)."

(from Ch 4)"

(from Ch 4)"

EECE 315 PPTSet5 – Scheduling 5-29!

Contention Scope
  On many-to-one and many-to-many models, thread library schedules user-

level threads to run on LWP;"
  this scheme is known as process-contention scope (PCS) since

scheduling competition is within the same process"

  To decide which kernel thread to schedule onto a CPU, the kernel uses
system-contention scope (SCS) "
  With SCS, competition for the CPU is among all threads in the system"
  Systems using one-to-one model, use SCS only (e.g. Windows) "

  Pthread API allows specifying either PCS or SCS during thread creation"
  PTHREAD_SCOPE_PROCESS schedules threads using PCS scheduling"
  PTHREAD_SCOPE_SYSTEM schedules threads using SCS scheduling."

EECE 315 PPTSet5 – Scheduling 5-30!

Lecture Outline
  Basic Concepts: Scheduling Criteria"

  Scheduling Algorithms "

  Thread Scheduling"

  Multicore Scheduling!

