
EECE 315 – L7 7-1!

6 - Main Memory

EECE 315 (101)
ECE – UBC

2013 W2

Acknowledgement: This set of slides is partly based on the PPTs provided by the Wiley’s companion website (including textbook
images, when not explicitly mentioned/referenced).

EECE 315 PPTSet7 – Main Memory 7-2!

Lecture Outline
  Background!

  Swapping "

  Contiguous Memory Allocation"
  Fragmentation "

  Paging"
  Structure of the Page Table"

  Segmentation"

Operating
System

Process 3

Process 0

Process 2

Process 1

EECE 315 PPTSet7 – Main Memory 7-3!

Background
  A program must be brought into memory (from disk) and placed within a

process for it to be run"

  Main memory and registers are the only storage the CPU can access directly"
  Register access takes one CPU clock (or less)"
  Main memory can take many cycles (the CPU may have to stall)"
  Cache sits between main memory and CPU registers"

  The OS, executing in kernel mode, is given unrestricted access to both OS
and users’ memory"

EECE 315 PPTSet7 – Main Memory 7-4!

Background (cont)
  We must make sure that each process has a separate memory space"

  we need the ability to determine the range of legal addresses that the
process may access,"

  and to make sure the process can access only these legal addresses"
  A simplified view of a process image in main memory (compare this with

Slide 3-5)"
"

Source: Stallings

EECE 315 PPTSet7 – Main Memory 7-5!

Background (cont)
  A pair of base and limit registers define the address space"
"

  Protection of memory space is
accomplished by having the CPU
hardware compare every address
generated in user mode to ensure
correct operation"

EECE 315 PPTSet7 – Main Memory 7-6!

Binding of Instructions and Data to Memory
  Most systems allow a user process to reside in any part of the physical

memory, (e.g. it doesn’t need to start at 0)"

  This approach affects the addresses that the
user program can use"

  Addresses in the source code are generally
symbolic "
 e.g. counter!

  A compiler will typically bind these symbolic
addresses to relocatable addresses "
 e.g. “14 bytes from the beginning of this

module”"
  The linkage editor or loader may bind the

relocatable addresses to absolute addresses"

EECE 315 PPTSet7 – Main Memory 7-7!

Logical Versus Physical Address Space
  Logical address: an address generated by the CPU is referred to as a

logical address (also referred to as virtual address)"

  Physical address: an address seen by the memory unit (i.e. the one
loaded into the memory-address register of the memory) is referred to as
a physical address. "
  The compile-time and load-time address-binding methods generate

identical logical and physical addresses."
  However, logical (virtual) and physical addresses differ in the

execution-time address-binding scheme"

  The set of all logical addresses generated by a program is a logical
address space; the set of all physical addresses corresponding to these
logical addresses is a physical address space."

  The run-time mapping from virtual to physical addresses is done by a
hardware device called the memory-management unit (MMU)"

EECE 315 PPTSet7 – Main Memory 7-8!

Memory-Management Unit (MMU)
  MMU can use many different methods to accomplish the mapping"
  We first illustrate a simple MMU scheme: "

  The base register is now called a relocation register"
  The value in the relocation register is added to every address generated

by a user process at the time it is sent to memory"
  The user program deals with logical addresses; it never sees the real

physical addresses"

  The concept of a logical
address space that is bound
to a separate physical
address space is central to
proper memory
management"

EECE 315 PPTSet7 – Main Memory 7-9!

Lecture Outline
  Background"

  Swapping !

  Contiguous Memory Allocation"
  Fragmentation "

  Paging"
  Structure of the Page Table"

  Segmentation"

  Examples: Intel and ARM processors"

Operating
System

Process 3

Process 0

Process 2

Process 1

EECE 315 PPTSet7 – Main Memory 7-10!

  A process must be in the memory to be executed "
  A process, however, can be swapped temporarily out of memory to a

backing store, and then brought back into memory for continued
execution"

  The system maintains a ready queue consisting of all ready-to-run
processes whose memory images are in memory or on the backing store"

Swapping

  whenever the CPU scheduler
decides to execute a process, it
call the dispatcher,"

  if the dispatcher determines that
the process is not in memory and
there is not enough free memory
region, the dispatcher swaps out
a process currently in memory
and swaps in the desired
process."

EECE 315 PPTSet7 – Main Memory 7-11!

Swapping Example
Source: Tanenbaum

a) only A in memory

b & c) B and C are created or swapped in
d) A is swapped out

e & F) D comes in and B goes out

g) A is swapped in again

EECE 315 PPTSet7 – Main Memory 7-12!

Swapping (cont)
  Backing store is a fast disk that is large enough to accommodate copies of

all memory images for all users"
  it must provide direct access to these memory images 

!

  Roll out, roll in is a swapping variant used for priority-based scheduling
algorithms; "
  a lower-priority process is swapped out, so that a higher-priority process

can be loaded and executed"

  The context-switch time in such a swapping system is fairly high"
  a major part of swap time is transfer time "
  the total transfer time is directly proportional to the amount of memory

swapped"
  Swapping is constrained by other factors as well (e.g. pending I/O)"

  Modified versions of swapping are found on many systems (i.e., UNIX,
Linux, and Windows)"

"

EECE 315 PPTSet7 – Main Memory 7-13!

Lecture Outline
  Background"

  Swapping "

  Contiguous Memory Allocation!
  Fragmentation "

  Paging"
  Structure of the Page Table"

  Segmentation"

Operating
System

Process 3

Process 0

Process 2

Process 1

EECE 315 PPTSet7 – Main Memory 7-14!

Contiguous Allocation
  The main memory must accommodate both the OS and the various

user processes"
  The main memory is usually divided into two partitions:"

  resident operating system, usually held in low memory with
interrupt vector (equally it might be in high memory)"

  user processes then held in high memory "
"

  In contiguous memory allocation, each process is contained
in a single contiguous section of memory."

Source: Tanenbaum

Operating
System

Process 3

Process 0

Process 2

Process 1

EECE 315 PPTSet7 – Main Memory 7-15!

Contiguous Allocation (Cont)
  One of the simplest methods for allocating memory is to divide memory

into several fixed-sized partitions."
  each partition may contain exactly one process"
  was used in IBM OS/360 (no longer is used)"

  In the variable-partition scheme, the OS keeps a table indicating which
parts of memory are available and which are occupied"
  a hole is a block of available memory. So holes of various sizes may

be scattered throughout the memory"
  when a process arrives and is to be allocated space, it is allocated

memory from a hole large enough to accommodate it"

OS"

process 5"

process 8"

process 2"

OS"

process 5"

process 2"

OS"

process 5"

process 2"

OS"

process 5"
process 9"

process 2"

process 9"

process 10"

EECE 315 PPTSet7 – Main Memory 7-16!

Dynamic Storage-Allocation Problem
  Dynamic storage-allocation problem concerns how to satisfy a request of

size n from a list of free holes"
  The following three solutions are the ones most commonly used:"

  First-fit: Allocate the first hole that is big enough"
  Best-fit: Allocate the smallest hole that is big enough"

 we must search the entire list, unless ordered by size "
  this strategy produces the smallest leftover hole"

  Worst-fit: Allocate the largest hole "
 we must also search the entire list "
  this strategy produces the largest leftover hole (which might be more

useful that the smaller leftover hole from a best-fit approach)"

  Simulations have shown that both first-fit and best-fit are better than worst-
fit in terms of speed and storage utilization "

  Neither first-fit nor best-fit is better than the other, but first-fit is generally
faster"

EECE 315 PPTSet7 – Main Memory 7-17!

Fragmentation
  As processes are loaded and removed from memory, the free memory

space is broken into little pieces."
  External Fragmentation exists when the total memory space is enough

to satisfy a request, but it is not contiguous"

  Internal Fragmentation: when the allocated memory (e.g. using fixed-
size blocks) is larger than the requested memory, the difference is
internal fragmentation, i.e. unused memory that is internal to a partition"

  One possible method to reduce external fragmentation is compaction!
  we shuffle memory contents to place all free memory together in one

large block"
  compaction is possible only if the relocation is dynamic, and is done at

execution time"

EECE 315 PPTSet7 – Main Memory 7-18!

Lecture Outline
  Background"

  Swapping !

  Contiguous Memory Allocation"
  Fragmentation "

  Paging!
  Structure of the Page Table"

  Segmentation"

  Examples: Intel and ARM processors"

Operating
System

Process 3

Process 0

Process 2

Process 1

EECE 315 PPTSet7 – Main Memory 7-19!

Paging
  Another solution to the external-fragmentation is to permit the logical

address space to be noncontiguous."
  Two complementary techniques achieve this solutions: Paging and

segmentation"

  Paging is a memory-management scheme that permits the physical address
space of a process to be noncontiguous"

  Paging avoids external fragmentation and the
need for compaction"

  It also solves the considerable problem of
fitting memory chunks of varying sized onto
the backing store (when swapped out)"

EECE 315 PPTSet7 – Main Memory 7-20!

Paging (cont)
  The basic method for implementing paging involves "

  breaking the physical memory into fixed-sized blocks called frames "
  and breaking the logical memory into blocks of same size called pages"

  the page and frame size is defined by the hardware"
  the page size is a power of 2, between 512 bytes and 16 MB"

  To run a program of size k
pages, we need to find k free
frames"

EECE 315 PPTSet7 – Main Memory 7-21!

Address Translation Scheme
  Every address generated by the CPU is divided into two parts"

  assume a given logical address space 2m and page size 2n"
page number" page offset"

p" d"
m - n! n!

  Page number (p) is used as an index
into a page table which contains the
base address of each page in physical
memory 
"

  Page offset (d) is combined with the
above base address to define the
physical memory address that is sent
to the memory unit"

"

EECE 315 PPTSet7 – Main Memory 7-22!

Paging Hardware
  The hardware support for paging in illustrated below:"

= See animation

EECE 315 PPTSet7 – Main Memory 7-23!

Paging Example
  As an example, consider the

memory in the following figure"
  assume a 16-byte logical

address (m=4), a 4-byte pages
(n=2) and a 32-byte memory "

  We show how the user’s view
of the memory can be mapped
into physical memory"

  As shown in the example, paging is
a form of dynamic relocation. "
  Every logical address is bound

by the paging hardware to
some physical address."

  By using paging, we have no
external fragmentation, but we may
have some internal fragmentation"

EECE 315 PPTSet7 – Main Memory 7-24!

Free Frames

Before allocation" After allocation"

  The OS must manage the allocation details of physical memory. This info is
generally kept in a data structure called a frame table."

EECE 315 PPTSet7 – Main Memory 7-25!

Implementation of Page Table
  Each OS has its own methods for storing page tables"
  The hardware implementation of the page table can be done is several

ways:"
  In the simplest form, by using a set of dedicated registers"

  this is only feasible if the page table is reasonably small"
  Most contemporary computers allow the page table to be very large"

 so the page table is kept in main memory"
 Page-table base register (PTBR) points to the page table"
 Page-table length register (PRLR) indicates size of the page table"

–  used for protection"
  In this scheme every data/instruction access requires two memory

accesses. One for the page table and one for the data/instruction."
 A solution to the above two memory access problem is to use a

special fast-lookup hardware cache called translation look-aside
buffers (TLBs) (also known as associative memory)"

EECE 315 PPTSet7 – Main Memory 7-26!

Paging Hardware With TLB
  TLB miss: the page number is not in the TLB"
  TLB hit"
"

  Some TLBs store address-
space identifiers (ASIDs) in
each TLB entry to uniquely
identify each process to
provide address-space
protection for that process"

?

EECE 315 PPTSet7 – Main Memory 7-27!

Effective Access Time
  The percentage of times that a particular page number is found in the TLB

is hit ratio"
  As an example, an 80-percent hit ratio means that we find the desired page

number in the TLB, 80 percent of the time"
  assuming a 20 ns to search the TLB and 100 ns to access memory,

then the access takes 120 ns, when the page is in the TLB;"
  if we fail to find the page number in TLB (20 ns), then we must first

access memory for the page table and frame number (100 ns) and then
access the desired byte in memory (100 ns) for a total of 220 ns;"

  to find the effective memory-access time, we weight the case by its
probability"

 That is, with a 80 percent hit rate, we will see an access time of
140ns on average, compared with 120ns (with 100 percent hit rate)
and 200ns (when no TLB is used). "

 "

ns 1402202012080 timeaccess effective =×+×= ..

EECE 315 PPTSet7 – Main Memory 7-28!

Memory Protection
  In a paged environment, memory protection can be implemented by

associating protection bits"
  one bit can define a page to be read-write or read-only "
  another bit, valid-invalid bit attached to each entry in the page

table:"

  “valid” indicates that the associated
page is in the process’ logical
address space, and is thus a legal
page"

  “invalid” indicates that the page is
not in the process’ logical address
space"
  so illegal addresses can be

trapped "

EECE 315 PPTSet7 – Main Memory 7-29!

Shared Pages

  For the shared code"
  one copy of read-only (reentrant

or pure) code is shared among
processes (i.e., text editors,
compilers, window systems)"

  shared code must appear in the
same location in the logical
address space of all processes 
"

  For the private code and data "
  each process keeps a separate

copy of the code and data"
  the pages for the private code

and data can appear anywhere in
the logical address space"

  An advantage of paging is the possibility of sharing common code"

EECE 315 PPTSet7 – Main Memory 7-30!

Structure of the Page Table
  There are three common techniques for structuring the page table"

  Hierarchical Paging"

  Hashed Page Tables"

  Inverted Page Tables"

EECE 315 PPTSet7 – Main Memory 7-31!

Hierarchical Page Tables
  Most modern computer systems support a large logical address space (232

and 264). "
  Since the page table itself becomes very large, the logical address

space is broken up into multiple page tables"

  A simple technique is a two-level  
page table:"

  For a system with a 64-bit logical
address, a three-level paging scheme
may be used"

"

EECE 315 PPTSet7 – Main Memory 7-32!

  A logical address on a 32-bit machine with 4KB page size is divided into:"
  a page number consisting of 20 bits"
  a page offset consisting of 12 bits"

  One simple solution to the problem is to divide the page table into smaller
pieces. Since the page table is paged, the page number is further divided
into:"
  a 10-bit page number (p1, an index into the outer page table)"
  a 10-bit page offset (p2, the displacement within the page of the outer

page table)"

Two-Level Paging Example

page number" page offset"

p1" p2" d"
10" 10" 12"

 tablepagefor MB 4 4B isentry each if
enteriesmillion 12/2 :.. 1232

⇒

≈ei

EECE 315 PPTSet7 – Main Memory 7-33!

  For a 64-bit address space and two-level paging, the address would
look like:"

  If we use three-level paging, then:"

Three-Level Paging Example

)2(size page4K 12 enteries tablepageouter 2 42

 enteries tablepageinner 2 10

EECE 315 PPTSet7 – Main Memory 7-34!

Lecture Outline
  Background"

  Swapping !

  Contiguous Memory Allocation"
  Fragmentation "

  Paging"
  Structure of the Page Table"

  Segmentation!

  Examples: Intel and ARM processors"

Operating
System

Process 3

Process 0

Process 2

Process 1

EECE 315 PPTSet7 – Main Memory 7-35!

Segmentation

User’s View of a Program

  Usually users prefer to view memory as a collection of variable-sized
segments, not a linear array of bytes "

  A program is a collection of segments"
  A segment is a logical unit "

 such as: main program, function,  
method, object, array, stack, …"

  e.g., a C compiler may create separate  
segments for the following:"
  the code"
  global variables"
  the heap (from which memory is allocated)"
  stacks used by each thread"
  the standard C library ""

EECE 315 PPTSet7 – Main Memory 7-36!

Logical View of Segmentation

1"

3"

2"

4"

1"

4"

2"

3"

user space " physical memory
space"

  Segmentation is a memory-management scheme that supports this user
view of memory"

  A logical address space is a
collection of segments"

  Each segment has a name (a #)
and a length"

  The addresses specify both "
  the segment name "
  and the offset within the

segment "

EECE 315 PPTSet7 – Main Memory 7-37!

Segmentation Architecture
  A logical address consists of a two-tuple:"
" "<segment-number, offset>"

"

"
  Although the user now refer to objects in the program by a two-dimensional

address, the actual physical memory is of course one-dimensional,"
  so memory map is needed"
  Segment table is used to map the two-dimensional physical addresses;

each entry in the table has:"
 a base segment contains the starting physical address where the

segments reside in memory"
 a limit segment specifies the length of the segment"

""

EECE 315 PPTSet7 – Main Memory 7-38!

Segmentation Hardware

segment #

offset

EECE 315 PPTSet7 – Main Memory 7-39!

Example of Segmentation

  Consider an example
in which we have five
segments numbered
from 0 to 4"

  The segments are
stored in memory as
shown:"

= See animation

EECE 315 PPTSet7 – Main Memory 7-40!

Lecture Outline
  Background"

  Swapping !

  Contiguous Memory Allocation"
  Fragmentation "

  Paging"
  Structure of the Page Table"

  Segmentation"
"

Operating
System

Process 3

Process 0

Process 2

Process 1

