
EECE 315 – UBC

Assignment 4
NOTE: Solution to Assignment 3 and test cases for Assignment 4 will be
made available on Friday, when demo for Assignment 3 is over. If you have
completed Assignment 3 well, you should be good to go, otherwise you
can use code provided in the Assignment 3 solution as a reference for
Assignment 4. Also we will add some more test cases for you to test your
code for assignment 4.

Overview	

	

In this lab you will extend Nachos to support demand paged virtual memory.
This new functionality gives processes the illusion of a virtual memory that is
larger than the available machine memory.	

You will implement and debug virtual memory in two steps. First, you will
implement demand paging using page faults to dynamically load process virtual
pages on demand, rather than initializing page frames for each process in
advance at Exec time as you did in Assignment 3. Next, you will implement page
replacement, enabling your kernel to evict a virtual page from memory to free up
a physical page frame to satisfy a page fault. Demand paging and page
replacement together allow your kernel to "overbook" memory by executing more
processes than would fit in machine memory at any one time, using page faults
to "juggle" the available physical page frames among the larger number of
process virtual pages. If it is implemented correctly, virtual memory is
undetectable to user programs unless they monitor their own performance.

The operating system kernel works together with the machine's memory
management unit (MMU) to support virtual memory. Coordination between the
hardware and software centers on the page table structure for each process. You
used page tables in the previous assignment to allow your kernel to assign any
free page frame to any process page, while preserving the illusion of a
contiguous memory for the process. The indirect memory addressing through
page tables also isolates each process from bugs in other processes that are
running concurrently. In this project, you will extend your kernel's handling of the
page tables to use three special bits in each page table entry (PTE):

• Valid bit: The kernel sets or clears the valid bit in each PTE to tell the
machine which virtual pages are resident in memory (a valid translation)
and which are not resident (an invalid translation). If a user process
references an address for which the PTE is marked invalid, then the
machine raises a page fault exception and transfers control to your
kernel's exception handler.

• Use bit: The machine sets the use bit (aka reference bit) in the PTE to
pass information to the kernel about page access patterns. If a virtual
page is referenced by a process, the machine sets the corresponding PTE
reference bit to inform the kernel that the page is active. Once set, the
reference bit remains set until the kernel clears it.

• Dirty bit: The machine sets the dirty bit in the PTE whenever a process
executes a store (write) to the corresponding virtual page. This informs the
kernel that the page is dirty; if the kernel evicts the page from memory,
then it must first "clean" the page by writing its contents to disk. Once set,
the dirty bit remains set until the kernel clears it.

Task 1 – Demand Paging

In the first part, you will continue to pre-allocate a page frame for each virtual
page of each newly created process at Exec time, just as in assignment 3. As
before, return an error from the Exec system call if there are not enough free
page frames to hold the process' new address space. But for this part, you need
to make the following changes to AddrSpace:

1. In your AddrSpace initialization method, initialize all the PTEs as invalid.

2. In the same method, remove the code that (1) zeros out the physical page
frames, (2) preloads the address space with the code and data segments
from the file, and (3) prevents programs that require too much memory
from proceeding. You will do this on demand when the process causes a
page fault -- you will continue to allocate physical page frames in
AddrSpace for each virtual page, but delay loading the frames with data
until they are actually referenced by the process.

3. Handle page fault exceptions in ExceptionHandler. When the process
references an invalid page, the machine will raise a page fault exception
(if a page is marked valid, no fault is generated). Modify your exception
handler to catch this exception and handle it by preparing the requested
page on demand.

4. To prepare the requested page on demand, add a method to AddrSpace
to page in the faulted page from the executable file. Note that faults on
different address space segments are handled in different ways. For
example, a fault on a code page should read the corresponding code from
the executable file, a fault on a data page should read the corresponding
data from the executable file, and a fault on a stack frame should zero-fill
the frame. For pages that hold the arguments to the process, you will fault

on them when the child writes the arguments to its address space (using
WriteMem) when the child thread first starts running in the Nachos kernel
and before the program starts running.

5. Once you have paged in the faulted page, clear the page fault exception
by marking the PTE as valid. Then let the machine restart execution of
the user program at the faulting instruction -- when you return from the
exception, do not increment the PC as you did when handling a system
call so that the machine will re-execute the faulting instruction.

If you set up the page (by initializing it) and page table (by setting the valid bit)
correctly, then the instruction will execute correctly and the process will continue
on its way, none the wiser.

As you make the changes above, keep the following points in mind:

1. Remember, a virtual page may contain portions of two segments, such as
the end of the code segment and the beginning of the data segment. A
fault on that page will require you to load from both the code and data
segments into that page. You need to handle this boundary case for all
situations where two segments can overlap on a page (code, data, stack,
and argument).

2. If you use ReadMem (or WriteMem) to implement a system call, it is
entirely possible for those functions to reference a page that has yet to be
loaded into memory (since you can give them an arbitrary address in the
process virtual address space). If this happens, ReadMem will return
FALSE because it triggered a page fault when it tried to access the
address you gave it. You should not consider this an error. Instead, you
should retry the operation assuming that the referenced page was
successfully loaded. If it is FALSE again, then return an error.

3. StartProcess and Exec closed the executable file after creating the
address space. You no longer have this luxury, and will have to keep it
open during the life of the process.

Testing:

Start by testing with one process running at a time. During debugging, you will
probably want to print out the arguments that you are giving to ReadAt and bzero

when initializing a page during a page fault to make sure that you are loading the
correct parts of the executable file into the virtual page.

Expected output:

1. All the test programs should be running without any fault.
2. Print the relevant debug statements showing the memory allocation on

page fault.

Task 2 – Page Replacement

Now implement demand paged virtual memory with page replacement. In this
second part, not only do you delay initializing pages, but now you delay the
allocation of physical page frames until a process actually references a virtual
page that is not already loaded in memory.

1. Start by completing the gutting of your code that creates an address
space. In part one, you removed the code that initialized the virtual pages.
Now, remove the code that (1) allocates page frames and (2) preinstalls
virtual-physical translations when setting up the page table. Instead,
merely mark all the PTEs as invalid.

2. Extend your page fault exception handler to allocate a page frame on-the-
fly when a page fault occurs. In part one, you just initialized the virtual
page when a page fault occurred. In this part, allocate a physical page for
the virtual page and use your code from part 1 to initialize it, mark the PTE
as valid, and return from the exception.

You can get the above two changes working without having page replacement
implemented for the case where you run a single program that does not consume
all of physical memory. Before moving on, be sure that the two changes above
work for a single program that fits into memory (e.g., array).

Now implement page replacement to free up a physical page frame to handle
page faults:

1. Extend your page fault exception handler to evict pages once physical
memory becomes full. First, you will need to select a victim page to evict
from memory; for now, keep this simple and just choose a convenient
page. Then mark the PTE for that page as invalid.

2. Evict the victim page. If the page is clean (i.e., not dirty), then the page
can be used immediately; you can always recover the contents of the
page from disk. If the page is dirty, though, the kernel must save the page
contents in backing store on disk.

3. Read in the contents of the faulted page either from the executable file or
from backing store (see below).

4. Implement a BackingStore class to handle page in and page out
operations. An important part of this project is to use the Nachos file
system interface to allocate and manage the backing store. Implement
methods to allocate space on backing store, locate pages on backing
store, push pages from memory to backing store (for page out), and pull
from backing store to memory (for page in).

5. Use the FileSystem class to create files for backing store (see
filesys/filesys.h). After creating the backing store file, use the FileSystem
class to open it. Opening the file will return an OpenFile object, which
allows you to do reads and writes (see filesys/openfile.h). The Makefiles
are setup to compile with FILESYS_STUB defined, so be sure to look at
that version of the classes.

As you implement the above operations, keep the following points in mind:

1. As in the first part of the project, the first time a page is touched it needs to
be initialized (from the executable file for code and data, bzero'd for bss
and stack, or initialized when writing arguments; see part 1 above). If this
page is subsequently evicted to backing store, it will be read from there on
further page faults.

2. You are not limited to one file for backing store for the entire system, and
might find it more convenient to have a backing store file for each process
(doing so makes locating evicted pages convenient). However, do not
create backing store files at finer granularities; e.g., do not use one file per
page.

3. Be sure to clear the dirty bit when you mark a PTE for the victim page as
invalid.

4. When running multiple processes, you may select a victim page from
another process. As a result, you will need to update the PTE in the page
table for that process, not the faulting one.

5. Finally, you should only do as many page reads and writes as necessary
to execute the program, and as dictated by your page replacement
algorithm. You will soon discover that the first page fault is different than
subsequent ones on code and data pages. On the first fault you need to
read from the executable file, and on the second you need to read from
the backing store. Your implementation needs to be able to handle this
situation. It might be tempting to just copy the pages from the executable
file to the backing store when the process is first created, or on a page-by-
page basis when the first fault occurs, but both of these cases introduce
extra unecessary disk I/Os and should not be used.

Testing:

Reduce the memory size of physical memory by modifying NumPhyPages
variable in machine/machine.h file.

This way you reduce the memory size, therefore running a larger program will
cause the memory conflicts, therefore your code to clear pages from memory will
be executed.

Start by testing with one process running at a time. During debugging, you will
probably want to print out the arguments that you are giving to ReadAt and bzero
when initializing a page during a page fault to make sure that you are loading the
correct parts of the executable file into the virtual page.

Expected output:

1. All the test programs should be running without any fault.
2. Print the relevant debug statements showing the memory allocation and

de-allocation.

Evaluations	

	

Task	
 1	

	
 Correct	
 Implementation	
 	
 50%	

	
 (Your	
 output	
 should	
 print	
 relevant	
 debug	
 statement	
 for	
 memory	
 allocation)	

	

Task	
 2	

	
 Correct	
 Implementation	
 	
 50%	

	
 (Your	
 output	
 should	
 print	
 relevant	
 debug	
 statement	
 for	
 memory	
 allocation	

and	
 de-­‐allocation)	

	

	

	

Submission	
 Guidelines	

	

You	
 need	
 to	
 submit	
 all	
 the	
 files	
 that	
 you	
 will	
 be	
 modifying	
 for	
 this	
 assignment:	

	
 	

	

Create	
 and	
 submit	
 the	
 zip	
 file	
 as	
 an	
 attachment	
 to	
 the	
 eece315term2@gmail.com	

with	
 the	
 subject	
 as	
 follows:	

“Assignment4:	
 <Group	
 No.>”	

	

Once	
 you	
 submit	
 the	
 assignment,	
 you	
 will	
 receive	
 an	
 automated	
 reply	
 from	
 the	

system.	
 You	
 need	
 to	
 show	
 that	
 reply	
 to	
 the	
 TA	
 before	
 they	
 could	
 assess	
 your	

assignment	
 in	
 the	
 lab,	
 to	
 make	
 sure	
 that	
 you	
 have	
 submitted	
 your	
 assignment	

correctly.	

	

