
EECE 315 – UBC 

Assignment 4 
NOTE: Solution to Assignment 3 and test cases for Assignment 4 will be 
made available on Friday, when demo for Assignment 3 is over. If you have 
completed Assignment 3 well, you should be good to go, otherwise you 
can use code provided in the Assignment 3 solution as a reference for 
Assignment 4. Also we will add some more test cases for you to test your 
code for assignment 4. 

Overview	
  
	
  
In this lab you will extend Nachos to support demand paged virtual memory. 
This new functionality gives processes the illusion of a virtual memory that is 
larger than the available machine memory.	
  

You will implement and debug virtual memory in two steps. First, you will 
implement demand paging using page faults to dynamically load process virtual 
pages on demand, rather than initializing page frames for each process in 
advance at Exec time as you did in Assignment 3. Next, you will implement page 
replacement, enabling your kernel to evict a virtual page from memory to free up 
a physical page frame to satisfy a page fault. Demand paging and page 
replacement together allow your kernel to "overbook" memory by executing more 
processes than would fit in machine memory at any one time, using page faults 
to "juggle" the available physical page frames among the larger number of 
process virtual pages. If it is implemented correctly, virtual memory is 
undetectable to user programs unless they monitor their own performance. 

The operating system kernel works together with the machine's memory 
management unit (MMU) to support virtual memory. Coordination between the 
hardware and software centers on the page table structure for each process. You 
used page tables in the previous assignment to allow your kernel to assign any 
free page frame to any process page, while preserving the illusion of a 
contiguous memory for the process. The indirect memory addressing through 
page tables also isolates each process from bugs in other processes that are 
running concurrently. In this project, you will extend your kernel's handling of the 
page tables to use three special bits in each page table entry (PTE): 

• Valid bit: The kernel sets or clears the valid bit in each PTE to tell the 
machine which virtual pages are resident in memory (a valid translation) 
and which are not resident (an invalid translation). If a user process 
references an address for which the PTE is marked invalid, then the 
machine raises a page fault exception and transfers control to your 
kernel's exception handler. 



• Use bit: The machine sets the use bit (aka reference bit) in the PTE to 
pass information to the kernel about page access patterns. If a virtual 
page is referenced by a process, the machine sets the corresponding PTE 
reference bit to inform the kernel that the page is active. Once set, the 
reference bit remains set until the kernel clears it. 

• Dirty bit: The machine sets the dirty bit in the PTE whenever a process 
executes a store (write) to the corresponding virtual page. This informs the 
kernel that the page is dirty; if the kernel evicts the page from memory, 
then it must first "clean" the page by writing its contents to disk. Once set, 
the dirty bit remains set until the kernel clears it. 

Task 1 – Demand Paging 
 
In the first part, you will continue to pre-allocate a page frame for each virtual 
page of each newly created process at Exec time, just as in assignment 3. As 
before, return an error from the Exec system call if there are not enough free 
page frames to hold the process' new address space. But for this part, you need 
to make the following changes to AddrSpace: 

1. In your AddrSpace initialization method, initialize all the PTEs as invalid. 
 

2. In the same method, remove the code that (1) zeros out the physical page 
frames, (2) preloads the address space with the code and data segments 
from the file, and (3) prevents programs that require too much memory 
from proceeding. You will do this on demand when the process causes a 
page fault -- you will continue to allocate physical page frames in 
AddrSpace for each virtual page, but delay loading the frames with data 
until they are actually referenced by the process. 

 

3. Handle page fault exceptions in ExceptionHandler. When the process 
references an invalid page, the machine will raise a page fault exception 
(if a page is marked valid, no fault is generated). Modify your exception 
handler to catch this exception and handle it by preparing the requested 
page on demand. 

 

4. To prepare the requested page on demand, add a method to AddrSpace 
to page in the faulted page from the executable file. Note that faults on 
different address space segments are handled in different ways. For 
example, a fault on a code page should read the corresponding code from 
the executable file, a fault on a data page should read the corresponding 
data from the executable file, and a fault on a stack frame should zero-fill 
the frame. For pages that hold the arguments to the process, you will fault 



on them when the child writes the arguments to its address space (using 
WriteMem) when the child thread first starts running in the Nachos kernel 
and before the program starts running. 

 

5. Once you have paged in the faulted page, clear the page fault exception 
by marking the PTE as valid. Then let the machine restart execution of 
the user program at the faulting instruction -- when you return from the 
exception, do not increment the PC as you did when handling a system 
call so that the machine will re-execute the faulting instruction. 

If you set up the page (by initializing it) and page table (by setting the valid bit) 
correctly, then the instruction will execute correctly and the process will continue 
on its way, none the wiser. 

As you make the changes above, keep the following points in mind: 

1. Remember, a virtual page may contain portions of two segments, such as 
the end of the code segment and the beginning of the data segment. A 
fault on that page will require you to load from both the code and data 
segments into that page. You need to handle this boundary case for all 
situations where two segments can overlap on a page (code, data, stack, 
and argument). 

 

2. If you use ReadMem (or WriteMem) to implement a system call, it is 
entirely possible for those functions to reference a page that has yet to be 
loaded into memory (since you can give them an arbitrary address in the 
process virtual address space). If this happens, ReadMem will return 
FALSE because it triggered a page fault when it tried to access the 
address you gave it. You should not consider this an error. Instead, you 
should retry the operation assuming that the referenced page was 
successfully loaded. If it is FALSE again, then return an error. 

 

3. StartProcess and Exec closed the executable file after creating the 
address space. You no longer have this luxury, and will have to keep it 
open during the life of the process. 

Testing:  

Start by testing with one process running at a time. During debugging, you will 
probably want to print out the arguments that you are giving to ReadAt and bzero 



when initializing a page during a page fault to make sure that you are loading the 
correct parts of the executable file into the virtual page.  

Expected output: 

1. All the test programs should be running without any fault. 
2. Print the relevant debug statements showing the memory allocation on 

page fault. 

Task 2 – Page Replacement 

Now implement demand paged virtual memory with page replacement. In this 
second part, not only do you delay initializing pages, but now you delay the 
allocation of physical page frames until a process actually references a virtual 
page that is not already loaded in memory. 

1. Start by completing the gutting of your code that creates an address 
space. In part one, you removed the code that initialized the virtual pages. 
Now, remove the code that (1) allocates page frames and (2) preinstalls 
virtual-physical translations when setting up the page table. Instead, 
merely mark all the PTEs as invalid. 

 

2. Extend your page fault exception handler to allocate a page frame on-the-
fly when a page fault occurs. In part one, you just initialized the virtual 
page when a page fault occurred. In this part, allocate a physical page for 
the virtual page and use your code from part 1 to initialize it, mark the PTE 
as valid, and return from the exception. 

You can get the above two changes working without having page replacement 
implemented for the case where you run a single program that does not consume 
all of physical memory. Before moving on, be sure that the two changes above 
work for a single program that fits into memory (e.g., array). 

Now implement page replacement to free up a physical page frame to handle 
page faults: 

1. Extend your page fault exception handler to evict pages once physical 
memory becomes full. First, you will need to select a victim page to evict 
from memory; for now, keep this simple and just choose a convenient 
page. Then mark the PTE for that page as invalid. 

 



2. Evict the victim page. If the page is clean (i.e., not dirty), then the page 
can be used immediately; you can always recover the contents of the 
page from disk. If the page is dirty, though, the kernel must save the page 
contents in backing store on disk. 

 

3. Read in the contents of the faulted page either from the executable file or 
from backing store (see below). 

 

4. Implement a BackingStore class to handle page in and page out 
operations. An important part of this project is to use the Nachos file 
system interface to allocate and manage the backing store. Implement 
methods to allocate space on backing store, locate pages on backing 
store, push pages from memory to backing store (for page out), and pull 
from backing store to memory (for page in). 

 

5. Use the FileSystem class to create files for backing store (see 
filesys/filesys.h). After creating the backing store file, use the FileSystem 
class to open it. Opening the file will return an OpenFile object, which 
allows you to do reads and writes (see filesys/openfile.h). The Makefiles 
are setup to compile with FILESYS_STUB defined, so be sure to look at 
that version of the classes. 

As you implement the above operations, keep the following points in mind: 

1. As in the first part of the project, the first time a page is touched it needs to 
be initialized (from the executable file for code and data, bzero'd for bss 
and stack, or initialized when writing arguments; see part 1 above). If this 
page is subsequently evicted to backing store, it will be read from there on 
further page faults. 

 

2. You are not limited to one file for backing store for the entire system, and 
might find it more convenient to have a backing store file for each process 
(doing so makes locating evicted pages convenient). However, do not 
create backing store files at finer granularities; e.g., do not use one file per 
page. 

 



3. Be sure to clear the dirty bit when you mark a PTE for the victim page as 
invalid. 

 

4. When running multiple processes, you may select a victim page from 
another process. As a result, you will need to update the PTE in the page 
table for that process, not the faulting one. 

 

5. Finally, you should only do as many page reads and writes as necessary 
to execute the program, and as dictated by your page replacement 
algorithm. You will soon discover that the first page fault is different than 
subsequent ones on code and data pages. On the first fault you need to 
read from the executable file, and on the second you need to read from 
the backing store. Your implementation needs to be able to handle this 
situation. It might be tempting to just copy the pages from the executable 
file to the backing store when the process is first created, or on a page-by-
page basis when the first fault occurs, but both of these cases introduce 
extra unecessary disk I/Os and should not be used. 

 

Testing:  

Reduce the memory size of physical memory by modifying NumPhyPages 
variable in machine/machine.h file. 

This way you reduce the memory size, therefore running a larger program will 
cause the memory conflicts, therefore your code to clear pages from memory will 
be executed. 

Start by testing with one process running at a time. During debugging, you will 
probably want to print out the arguments that you are giving to ReadAt and bzero 
when initializing a page during a page fault to make sure that you are loading the 
correct parts of the executable file into the virtual page.  

 

Expected output: 

1. All the test programs should be running without any fault. 
2. Print the relevant debug statements showing the memory allocation and 

de-allocation. 



 

 

Evaluations	
  
	
  
Task	
  1	
  
	
   Correct	
  Implementation	
   	
   50%	
  
	
   (Your	
  output	
  should	
  print	
  relevant	
  debug	
  statement	
  for	
  memory	
  allocation)	
  
	
  
Task	
  2	
  
	
   Correct	
  Implementation	
   	
   50%	
  
	
   (Your	
  output	
   should	
  print	
   relevant	
  debug	
   statement	
   for	
  memory	
  allocation	
  
and	
  de-­‐allocation)	
  
	
  
	
  
	
  
Submission	
  Guidelines	
  
	
  
You	
  need	
  to	
  submit	
  all	
  the	
  files	
  that	
  you	
  will	
  be	
  modifying	
  for	
  this	
  assignment:	
  
	
   	
  
	
  
Create	
   and	
   submit	
   the	
   zip	
   file	
   as	
   an	
   attachment	
   to	
   the	
   eece315term2@gmail.com	
  
with	
  the	
  subject	
  as	
  follows:	
  
“Assignment4:	
  <Group	
  No.>”	
  
	
  
Once	
   you	
   submit	
   the	
   assignment,	
   you	
   will	
   receive	
   an	
   automated	
   reply	
   from	
   the	
  
system.	
   You	
   need	
   to	
   show	
   that	
   reply	
   to	
   the	
   TA	
   before	
   they	
   could	
   assess	
   your	
  
assignment	
   in	
   the	
   lab,	
   to	
   make	
   sure	
   that	
   you	
   have	
   submitted	
   your	
   assignment	
  
correctly.	
  

 

	
  


