
EECE 315 – L10 10-1!

8 – File System
Interface

EECE 315 (101)

ECE – UBC
2013 W2

Acknowledgement: This set of slides is partly based on the PPTs provided by the Wiley’s companion website (including textbook
images, when not explicitly mentioned/referenced).

EECE 315 PPTSet10 – File System Interface 10-2!

Overview
  File Concept!
  Access Methods"

  Directory Structure"
"
  File-System Mounting"
  File Sharing"

  Protection"

EECE 315 PPTSet10 – File System Interface 10-3!

Overview
  File system is one the most visible aspects of an OS"

  it provides the mechanism for on-line storage of and access to
both data and programs "

  the file system consists of two distinct parts:"
  a collection of files "

 each storing related data"
  and a directory structure "

 which organizes and provides information about all the files in
the system"

  File systems live on device (e.g. hard disk)"

EECE 315 PPTSet10 – File System Interface 10-4!

Concept of File
  The concept of file is extremely general:"

  The OS abstracts from the physical properties of its storage devices to
define a logical storage unit, the file"

  A file is a named collection of related information that is recorded on
secondary storage"

  From a user’s perspective, a file is the smallest allotment of logical
secondary storage"

  A file represents programs and data:"
 Everything must be within a file to be written to the secondary

storage"
 A data file may be numeric, alphabetic, alphanumeric, or binary"
 A file is a sequence of bits, bytes, lines or records, the meaning of

which is defined by the file’s creator and user"
 A file may be free form or may have a certain defined structure,

which depends on its type"

EECE 315 PPTSet10 – File System Interface 10-5!

File Attributes
  Directory listing example: the following is the output result using the “ls –l”

command in Unix/Linux (in Windows/Linux, a similar command is “dir”): "

access
permissions

owner

directories group

size

date/time

file/directory
name

EECE 315 PPTSet10 – File System Interface 10-6!

File Attributes (cont)
  A file’s attributes vary from one OS to another but typically consist of:"

  Name "
 a file is named, for the convenience of its human user, e.g. myfile.c!
  in some OS, a name is case-sensitive."
  the name attribute is the only information kept in human-readable

form"
  Identifier – a unique tag (number) that identifies file within the file

system"
  Type – an info needed for systems that support different types"
  Location – a pointer to a device and the file location on that device"
  Size – the current file size (in bytes, words, or blocks)"
  Protection – controls who can do reading, writing, executing"
  Time, date, and user identification – data for protection, security, and

usage monitoring"

  Information about all files is kept in the directory structure, which is
maintained on the disk"

EECE 315 PPTSet10 – File System Interface 10-7!

File Operations
  A File is an abstract data type. To define a file properly, we need to

consider the operations that can be performed on files."
  Creating a file: Two steps are necessary to create a file"

 space must be found in the file system"
 an entry must be created in the directory"

  Writing a file: To write to a file, we use a system call that specifies
the name of the file and the information to be written to the file. The
system must keep a write pointer to the location in the file where the
next write is to take place!

  Reading a file: To read from a file, we use a system call that
specifies the name of the file and where the next block of the file
should be put (in memory)"
 because a process is either reading from or writing to a file, the

current operation location can be kept as a per-process current-
file-position pointer"

EECE 315 PPTSet10 – File System Interface 10-8!

File Operations (cont)
  Cont:"

  Repositioning within file (file seek): repositioning the current-file-
position pointer"

  Deleting a file: To delete the file, we search the directory for the
named file. Having found it, we release all file space, and erase the
directory entry"

  Truncating a file: The user may want to erase the contents of a file
but keep its attributes. This function allows all attributes remain
unchanged except for file length"

  Other operations are also possible: appending, renaming, …"
  Most of the file operations mentioned involve searching the directory for

the entry associated with the name file !
  to avoid this constant searching, many systems require that an
open() system call be made before a file is first used actively"

  the OS keeps a small table, called the open-file table, containing
information about all open files"

EECE 315 PPTSet10 – File System Interface 10-9!

File Operations (cont)
  When a file operation is requested, the file is specified via an index into

the open-file table, so no searching is required"
  when the file is no longer being actively used, it is closed by the

process and the OS removes its entry form the table "
  System calls:"

  Open() – search the directory structure on disk to find the entry, and
move the content of entry to memory"

  Close () – move the content of the entry in memory to directory
structure on disk"

  Some systems though implicitly open a file when the first reference to it
is made "
  The file is automatically closed when the job or program that opened

the file terminates"

EECE 315 PPTSet10 – File System Interface
10-10!

Open Files
  Several pieces of data are needed to manage open files:"

  File pointer "
 on systems that do not include a file offset as part of the read()

and write() operation, the system must track the last read/write
location as a current-file-position pointer"

  this pointer is unique to each process operating on the file"
  File-open count: is the counter of the number of times a file is open."

  because multiple processes may have opened a file, the system
must wait for the last file to close before removing the open-file
table entry"

  Disk location of the file: cache of data access information. This info
is needed to locate the file on disk and is kept in memory."

  Access rights: each process opens a file in an access mode. This
info is stored on the per-process table to allow/deny subsequent I/O"

EECE 315 PPTSet10 – File System Interface 10-11!

Open File Locking
  Some OS provide facilities for locking an open file (or section of a file)"

  File locks allow one process to lock a file and prevent other processes
from gaining access to it"
  files locks are useful for files that are shared by several processes"

 a shared lock: several processes can acquire the lock
concurrently"

 an exclusive lock: only one process at a time can acquire the
lock"

  OS may provide either mandatory or advisory file locking mechanism:"
  Mandatory – access is denied depending on locks held and

requested"
  Advisory – processes can find status of locks and decide what to

do"

EECE 315 PPTSet10 – File System Interface
10-12!

File Types – Name, Extension
  If an OS recognizes the type

of a file, it can then operate
on the file in reasonable ways"

  A common technique for
implementing file types is to
include the type as part of the
file name:"
  The name is split into two

parts: a name and an
extension, separated by a
period"

  UNIX uses a crude magic
number stored at the
beginning of some files to
indicate roughly the type of
the file"

EECE 315 PPTSet10 – File System Interface
10-13!

File Structure
  File types also can be used to indicate the internal structure of the file"

  source and object files have structures that match the expectations of
the programs that read them"

  certain files must conform to a required structure that is understood by
the OS"
 e.g. an executable file have a specific structure"

  Most OSs (UNIX, Mac, MS-DOS, …) impose (and support) a minimal
number of file structures"
  this is to reduce the size of the OS and to improve its support for

different file structures"
  all OS though must support at least one structure – that is an

executable file"
  e.g. UNIX considers each file to be a sequence of 8-bit bytes; no

interpretation of these bits is made by the OS"
  this scheme provides maximum flexibility but little support"

" ""

EECE 315 PPTSet10 – File System Interface
10-14!

Overview
  File Concept"
  Access Methods!

  Directory Structure"
"
  File-System Mounting"
  File Sharing"

  Protection"

EECE 315 PPTSet10 – File System Interface
10-15!

Access Methods
  Files store information. When it is used, this information must be accessed

and read into computer memory"
  The info in the file can be accessed in several ways"

  Sequential Access: !
  it is the simplest method"
  in this mode, information in the file is processed in order, one

record after the other"
  it is the most common method, e.g. in editors or compilers"
  read next: reads the next portion of file and advances a file pointer"
 write next: appends to the end of the file and advances to the end

of the newly written material (new end of file)"
" ""

EECE 315 PPTSet10 – File System Interface
10-16!

Access Methods (cont)
  Cont"

  Direct Access (relative access):"
 a file is made up of fixed-length logical records that allow programs

to read and write records rapidly in no particular order"
  this model is based on the disk model of a file, since disks allow

random access to any file block"
  the block number provided by the user to the OS for the access is a

relative block number (i.e. an index relative to the beginning of the
file)"

Fig: simulation
of sequential
access on a
direct-access file

EECE 315 PPTSet10 – File System Interface
10-17!

Other Access Methods
  Other access methods can be build on top of a direct-access method"

  these method generally involve the construction of an index for the file"
  the index contains pointers to various blocks"
  to find a record in the file, we first search the index and then use the

pointer to access the file directly and to find the desired record"
  Example of Index and Relative Files"

EECE 315 PPTSet10 – File System Interface
10-18!

Overview
  File Concept"
  Access Methods"

  Directory Structure!
"
  File-System Mounting"
  File Sharing"

  Protection"

EECE 315 PPTSet10 – File System Interface
10-19!

Disk and Directory Structure
  Each entity containing a file system is generally known as a volume!

  each volume that contains a file system must also contain information
about the files in the system"

  this information is kept in entries in a device directory (directory for
short) or volume table of contents"

  A directory can be viewed as a symbol table that translates file names
into their directory entries"

F 1" F 2" F 3"
F 4"

F n"

Directory"

Files"

EECE 315 PPTSet10 – File System Interface
10-20!

Operations Performed on Directory
  The directory itself can be organized in many ways"

  we want to be able to insert entries, to delete entries, to reach for
a named entry, …"

  When considering a particular directory structure, the following
operations can be performed on a directory:"
  Search for a file"
  Create a file"
  Delete a file"
  List a directory"
  Rename a file"
  Traverse the file system (e.g. backup copy)"

EECE 315 PPTSet10 – File System Interface
10-21!

Directory (cont)

  Directories are used to organize files in a file system."

  to improve efficiency: locating a file quickly"

  for naming: convenient to users"
 two users can have the same name for different files"
 the same file can have several different names"

  to group files: logical grouping of files by properties, (e.g., all
Java programs, all games, …)"

EECE 315 PPTSet10 – File System Interface
10-22!

Single-Level Directory

  Now we look at the most common schemes for defining the logical
structure of a directory"

  The simplest directory structure is single-level directory:"
  all files are contained in the same directory for all users"

  Single-level directory has significant limitations:"
  Naming"
  Grouping"

EECE 315 PPTSet10 – File System Interface
10-23!

Two-Level Directory

  In the two-level directory structure, each user has his/her user file
directory (UFD)"
  the UFDs have similar structures but each lists only the files of a

single user "
  when a user logs on (or user job starts), the system’s master file

directory (MFD) is search which is indexed by user name or account
number"

  when a user refers to a particular file, only his won UFD is searched "

EECE 315 PPTSet10 – File System Interface
10-24!

Two-Level Directory (cont)
  The two-level directory solves the name-collision problem"

  this structure isolates one user from another, "
  if access is permitted, then one user must have the ability to name a

file in another user’s directory"
  A two-level directory can be thought of as a tree of height 2: "

  the root is the MFD and the UFDs are its direct descendants"
  Every file in the system has a path name "

  a user name and a file name define the path name "
  For example, to access file named test of userB, it can be referred to as /

userB/test!
  additional syntax may be used to specify the volume: !

 e.g. C:\userB\test (using a letter: in MS-DOS) !
 or the volume can be treated as a part of the directory name!

  Efficient searching: the sequence of directories searched when a file is
named is called the search path"

  Still, this method does not have grouping capability"

EECE 315 PPTSet10 – File System Interface
10-25!

Tree-Structured Directories
  A natural generalization is to extend the directory structure to a tree of

arbitrary height "
  a tree is the most common directory structure!

  This generalization would allow users to create their own subdirectories
and to organize their files accordingly."

files

directory or
subdirectory

EECE 315 PPTSet10 – File System Interface
10-26!

Tree-Structured Directories (Cont)
  In this structure, we achieve:"

  Efficient searching"
  Grouping Capability"

  Each process has a current directory!
  the current directory should have most of the files that are of current

interest or"
  the user should specify a path name or change the current directory"

  The initial current directory of the login shell is designated when the user
logs in"

  Path names can be absolute or relative"
  an absolute path name begins at the root and follows a path down to

the specified file"
 e.g. C:\users\userB\documents\myfile.c"

  a relative path name defines a path from the current directory"
 e.g. ..\documents\myfile.c"

EECE 315 PPTSet10 – File System Interface
10-27!

Acyclic-Graph Directories
  A tree structure prohibits sharing of files or directories. "
  An acyclic graph (i.e. a graph with no cycles) allows directories to share

subdirectories and files"
  a shared directory or file will exist in file system in two (or more) places

at once"

  A common way (e.g. in UNIX) is to
create a new directory entry called
a link to implement shared files and
subdirectories"
  a link is effectively a pointer to

another file or subdirectory"
  a link is resolved by using the

path name to locate the real
file"

EECE 315 PPTSet10 – File System Interface
10-28!

Overview
  File Concept"
  Access Methods"

  Directory Structure"
"
  File-System Mounting!
  File Sharing"

  Protection"

EECE 315 PPTSet10 – File System Interface
10-29!

File System Mounting
  A file system must be mounted before it can be accessed"

  an analogy is a file that must be opened before it is used"
  An unmounted file system is mounted at a mount point!

  typically a mount point is an empty directory"

  The mount procedure is straightforward:"
  the operating system is given the name of the device and the mount

point"
  the file system type is either provided, or the OS inspect the

structure and determines it"
  next, the OS verifies that the device contains a valid file system"
  finally, the OS notes in its directory structure that a file system is

mounted at the specified mount point"

EECE 315 PPTSet10 – File System Interface
10-30!

File System Mounting (cont)
  For example:"

Existing system Unmounted volume

mount point

EECE 315 PPTSet10 – File System Interface
10-31!

File System Examples
  MS Windows maintains an extended two-level directory structure, with

devices and volumes assigned drive letter."
  the path to a specific file takes the form of "

 drive-letter:\path\to\file!
  A file system may be mounted anywhere in the directory tree, just as

UNIX does"
  Windows automatically discover all devices and mount all located file

system at boot time."
  In UNIX the mount commands are explicit"

  a system configuration file contains a list of devices and mount points
for automatic mounting at boot time"
 other mounts may be executed manually"

  Mac OS X behaves much like BSD UNIX: all file systems are
automatically mounted under /Volumes directory"
 The GUI though shows the file systems as if they were all

mounted at the root level"

EECE 315 PPTSet10 – File System Interface
10-32!

Overview
  File Concept"
  Access Methods"

  Directory Structure"
"
  File-System Mounting"
  File Sharing"

  Protection!

EECE 315 PPTSet10 – File System Interface
10-33!

Protection
  When information is stored in a computer system, we want to keep it safe"

  from physical damage (the issue of reliability) and "
  improper access (the issue of protection) "

  Reliability is generally provided by duplicate copies of files (backup)"
  The need to protect files is a direct result of the ability to access files"

  Protection mechanisms provide controlled access by limiting the types
of file access that can be made. Several types of operations may be
controlled:"
 Read: read from the file"
 Write: write or rewrite the file"
 Execute: load the file into memory and execute it"
 Append: write new information at the end of the file"
 Delete: delete the file and free its space for possible reuse"
 List: list the name and attribute of the file"

EECE 315 PPTSet10 – File System Interface
10-34!

Access Lists and Groups
  The most common approach to the protection problem is to make access dependent

of the identity of the user"
  The most general scheme to implement identity dependent access is to

associate with each file and directory an access-control list (ACL)"
  Since constructing such a list is tedious, many systems use a condensed version of

the access list, based on the following three classification"
  owner: the user who created the file "
  group: a set of users who may need to share the file "
  universe: all other users"

  In the Unix system, these three classes of users are defined by three fields of 3 bits
each, rwx!
" " " " "rwx"
" "a) owner access "e.g. 7 "⇒ "111  
 

" " " "rwx"
" "b) group access "e.g. 6 " ⇒ "110  
"
" " " " "rwx"
" "c) public access "e.g. 1 " ⇒ "001"

examples:

r: read access
w: write access
x: execution
 access

EECE 315 PPTSet10 – File System Interface
10-35!

Overview
  File Concept"
  Access Methods"

  Directory Structure"
"
  File-System Mounting"
  File Sharing"

  Protection"

