
EECE 315 – L10 10-1!

8 – File System
Interface

EECE 315 (101)

ECE – UBC
2013 W2

Acknowledgement: This set of slides is partly based on the PPTs provided by the Wiley’s companion website (including textbook
images, when not explicitly mentioned/referenced).

EECE 315 PPTSet10 – File System Interface 10-2!

Overview
  File Concept!
  Access Methods"

  Directory Structure"
"
  File-System Mounting"
  File Sharing"

  Protection"

EECE 315 PPTSet10 – File System Interface 10-3!

Overview
  File system is one the most visible aspects of an OS"

  it provides the mechanism for on-line storage of and access to
both data and programs "

  the file system consists of two distinct parts:"
  a collection of files "

 each storing related data"
  and a directory structure "

 which organizes and provides information about all the files in
the system"

  File systems live on device (e.g. hard disk)"

EECE 315 PPTSet10 – File System Interface 10-4!

Concept of File
  The concept of file is extremely general:"

  The OS abstracts from the physical properties of its storage devices to
define a logical storage unit, the file"

  A file is a named collection of related information that is recorded on
secondary storage"

  From a user’s perspective, a file is the smallest allotment of logical
secondary storage"

  A file represents programs and data:"
 Everything must be within a file to be written to the secondary

storage"
 A data file may be numeric, alphabetic, alphanumeric, or binary"
 A file is a sequence of bits, bytes, lines or records, the meaning of

which is defined by the file’s creator and user"
 A file may be free form or may have a certain defined structure,

which depends on its type"

EECE 315 PPTSet10 – File System Interface 10-5!

File Attributes
  Directory listing example: the following is the output result using the “ls –l”

command in Unix/Linux (in Windows/Linux, a similar command is “dir”): "

access
permissions

owner

directories group

size

date/time

file/directory
name

EECE 315 PPTSet10 – File System Interface 10-6!

File Attributes (cont)
  A file’s attributes vary from one OS to another but typically consist of:"

  Name "
 a file is named, for the convenience of its human user, e.g. myfile.c!
  in some OS, a name is case-sensitive."
  the name attribute is the only information kept in human-readable

form"
  Identifier – a unique tag (number) that identifies file within the file

system"
  Type – an info needed for systems that support different types"
  Location – a pointer to a device and the file location on that device"
  Size – the current file size (in bytes, words, or blocks)"
  Protection – controls who can do reading, writing, executing"
  Time, date, and user identification – data for protection, security, and

usage monitoring"

  Information about all files is kept in the directory structure, which is
maintained on the disk"

EECE 315 PPTSet10 – File System Interface 10-7!

File Operations
  A File is an abstract data type. To define a file properly, we need to

consider the operations that can be performed on files."
  Creating a file: Two steps are necessary to create a file"

 space must be found in the file system"
 an entry must be created in the directory"

  Writing a file: To write to a file, we use a system call that specifies
the name of the file and the information to be written to the file. The
system must keep a write pointer to the location in the file where the
next write is to take place!

  Reading a file: To read from a file, we use a system call that
specifies the name of the file and where the next block of the file
should be put (in memory)"
 because a process is either reading from or writing to a file, the

current operation location can be kept as a per-process current-
file-position pointer"

EECE 315 PPTSet10 – File System Interface 10-8!

File Operations (cont)
  Cont:"

  Repositioning within file (file seek): repositioning the current-file-
position pointer"

  Deleting a file: To delete the file, we search the directory for the
named file. Having found it, we release all file space, and erase the
directory entry"

  Truncating a file: The user may want to erase the contents of a file
but keep its attributes. This function allows all attributes remain
unchanged except for file length"

  Other operations are also possible: appending, renaming, …"
  Most of the file operations mentioned involve searching the directory for

the entry associated with the name file !
  to avoid this constant searching, many systems require that an
open() system call be made before a file is first used actively"

  the OS keeps a small table, called the open-file table, containing
information about all open files"

EECE 315 PPTSet10 – File System Interface 10-9!

File Operations (cont)
  When a file operation is requested, the file is specified via an index into

the open-file table, so no searching is required"
  when the file is no longer being actively used, it is closed by the

process and the OS removes its entry form the table "
  System calls:"

  Open() – search the directory structure on disk to find the entry, and
move the content of entry to memory"

  Close () – move the content of the entry in memory to directory
structure on disk"

  Some systems though implicitly open a file when the first reference to it
is made "
  The file is automatically closed when the job or program that opened

the file terminates"

EECE 315 PPTSet10 – File System Interface
10-10!

Open Files
  Several pieces of data are needed to manage open files:"

  File pointer "
 on systems that do not include a file offset as part of the read()

and write() operation, the system must track the last read/write
location as a current-file-position pointer"

  this pointer is unique to each process operating on the file"
  File-open count: is the counter of the number of times a file is open."

  because multiple processes may have opened a file, the system
must wait for the last file to close before removing the open-file
table entry"

  Disk location of the file: cache of data access information. This info
is needed to locate the file on disk and is kept in memory."

  Access rights: each process opens a file in an access mode. This
info is stored on the per-process table to allow/deny subsequent I/O"

EECE 315 PPTSet10 – File System Interface 10-11!

Open File Locking
  Some OS provide facilities for locking an open file (or section of a file)"

  File locks allow one process to lock a file and prevent other processes
from gaining access to it"
  files locks are useful for files that are shared by several processes"

 a shared lock: several processes can acquire the lock
concurrently"

 an exclusive lock: only one process at a time can acquire the
lock"

  OS may provide either mandatory or advisory file locking mechanism:"
  Mandatory – access is denied depending on locks held and

requested"
  Advisory – processes can find status of locks and decide what to

do"

EECE 315 PPTSet10 – File System Interface
10-12!

File Types – Name, Extension
  If an OS recognizes the type

of a file, it can then operate
on the file in reasonable ways"

  A common technique for
implementing file types is to
include the type as part of the
file name:"
  The name is split into two

parts: a name and an
extension, separated by a
period"

  UNIX uses a crude magic
number stored at the
beginning of some files to
indicate roughly the type of
the file"

EECE 315 PPTSet10 – File System Interface
10-13!

File Structure
  File types also can be used to indicate the internal structure of the file"

  source and object files have structures that match the expectations of
the programs that read them"

  certain files must conform to a required structure that is understood by
the OS"
 e.g. an executable file have a specific structure"

  Most OSs (UNIX, Mac, MS-DOS, …) impose (and support) a minimal
number of file structures"
  this is to reduce the size of the OS and to improve its support for

different file structures"
  all OS though must support at least one structure – that is an

executable file"
  e.g. UNIX considers each file to be a sequence of 8-bit bytes; no

interpretation of these bits is made by the OS"
  this scheme provides maximum flexibility but little support"

" ""

EECE 315 PPTSet10 – File System Interface
10-14!

Overview
  File Concept"
  Access Methods!

  Directory Structure"
"
  File-System Mounting"
  File Sharing"

  Protection"

EECE 315 PPTSet10 – File System Interface
10-15!

Access Methods
  Files store information. When it is used, this information must be accessed

and read into computer memory"
  The info in the file can be accessed in several ways"

  Sequential Access: !
  it is the simplest method"
  in this mode, information in the file is processed in order, one

record after the other"
  it is the most common method, e.g. in editors or compilers"
  read next: reads the next portion of file and advances a file pointer"
 write next: appends to the end of the file and advances to the end

of the newly written material (new end of file)"
" ""

EECE 315 PPTSet10 – File System Interface
10-16!

Access Methods (cont)
  Cont"

  Direct Access (relative access):"
 a file is made up of fixed-length logical records that allow programs

to read and write records rapidly in no particular order"
  this model is based on the disk model of a file, since disks allow

random access to any file block"
  the block number provided by the user to the OS for the access is a

relative block number (i.e. an index relative to the beginning of the
file)"

Fig: simulation
of sequential
access on a
direct-access file

EECE 315 PPTSet10 – File System Interface
10-17!

Other Access Methods
  Other access methods can be build on top of a direct-access method"

  these method generally involve the construction of an index for the file"
  the index contains pointers to various blocks"
  to find a record in the file, we first search the index and then use the

pointer to access the file directly and to find the desired record"
  Example of Index and Relative Files"

EECE 315 PPTSet10 – File System Interface
10-18!

Overview
  File Concept"
  Access Methods"

  Directory Structure!
"
  File-System Mounting"
  File Sharing"

  Protection"

EECE 315 PPTSet10 – File System Interface
10-19!

Disk and Directory Structure
  Each entity containing a file system is generally known as a volume!

  each volume that contains a file system must also contain information
about the files in the system"

  this information is kept in entries in a device directory (directory for
short) or volume table of contents"

  A directory can be viewed as a symbol table that translates file names
into their directory entries"

F 1" F 2" F 3"
F 4"

F n"

Directory"

Files"

EECE 315 PPTSet10 – File System Interface
10-20!

Operations Performed on Directory
  The directory itself can be organized in many ways"

  we want to be able to insert entries, to delete entries, to reach for
a named entry, …"

  When considering a particular directory structure, the following
operations can be performed on a directory:"
  Search for a file"
  Create a file"
  Delete a file"
  List a directory"
  Rename a file"
  Traverse the file system (e.g. backup copy)"

EECE 315 PPTSet10 – File System Interface
10-21!

Directory (cont)

  Directories are used to organize files in a file system."

  to improve efficiency: locating a file quickly"

  for naming: convenient to users"
 two users can have the same name for different files"
 the same file can have several different names"

  to group files: logical grouping of files by properties, (e.g., all
Java programs, all games, …)"

EECE 315 PPTSet10 – File System Interface
10-22!

Single-Level Directory

  Now we look at the most common schemes for defining the logical
structure of a directory"

  The simplest directory structure is single-level directory:"
  all files are contained in the same directory for all users"

  Single-level directory has significant limitations:"
  Naming"
  Grouping"

EECE 315 PPTSet10 – File System Interface
10-23!

Two-Level Directory

  In the two-level directory structure, each user has his/her user file
directory (UFD)"
  the UFDs have similar structures but each lists only the files of a

single user "
  when a user logs on (or user job starts), the system’s master file

directory (MFD) is search which is indexed by user name or account
number"

  when a user refers to a particular file, only his won UFD is searched "

EECE 315 PPTSet10 – File System Interface
10-24!

Two-Level Directory (cont)
  The two-level directory solves the name-collision problem"

  this structure isolates one user from another, "
  if access is permitted, then one user must have the ability to name a

file in another user’s directory"
  A two-level directory can be thought of as a tree of height 2: "

  the root is the MFD and the UFDs are its direct descendants"
  Every file in the system has a path name "

  a user name and a file name define the path name "
  For example, to access file named test of userB, it can be referred to as /

userB/test!
  additional syntax may be used to specify the volume: !

 e.g. C:\userB\test (using a letter: in MS-DOS) !
 or the volume can be treated as a part of the directory name!

  Efficient searching: the sequence of directories searched when a file is
named is called the search path"

  Still, this method does not have grouping capability"

EECE 315 PPTSet10 – File System Interface
10-25!

Tree-Structured Directories
  A natural generalization is to extend the directory structure to a tree of

arbitrary height "
  a tree is the most common directory structure!

  This generalization would allow users to create their own subdirectories
and to organize their files accordingly."

files

directory or
subdirectory

EECE 315 PPTSet10 – File System Interface
10-26!

Tree-Structured Directories (Cont)
  In this structure, we achieve:"

  Efficient searching"
  Grouping Capability"

  Each process has a current directory!
  the current directory should have most of the files that are of current

interest or"
  the user should specify a path name or change the current directory"

  The initial current directory of the login shell is designated when the user
logs in"

  Path names can be absolute or relative"
  an absolute path name begins at the root and follows a path down to

the specified file"
 e.g. C:\users\userB\documents\myfile.c"

  a relative path name defines a path from the current directory"
 e.g. ..\documents\myfile.c"

EECE 315 PPTSet10 – File System Interface
10-27!

Acyclic-Graph Directories
  A tree structure prohibits sharing of files or directories. "
  An acyclic graph (i.e. a graph with no cycles) allows directories to share

subdirectories and files"
  a shared directory or file will exist in file system in two (or more) places

at once"

  A common way (e.g. in UNIX) is to
create a new directory entry called
a link to implement shared files and
subdirectories"
  a link is effectively a pointer to

another file or subdirectory"
  a link is resolved by using the

path name to locate the real
file"

EECE 315 PPTSet10 – File System Interface
10-28!

Overview
  File Concept"
  Access Methods"

  Directory Structure"
"
  File-System Mounting!
  File Sharing"

  Protection"

EECE 315 PPTSet10 – File System Interface
10-29!

File System Mounting
  A file system must be mounted before it can be accessed"

  an analogy is a file that must be opened before it is used"
  An unmounted file system is mounted at a mount point!

  typically a mount point is an empty directory"

  The mount procedure is straightforward:"
  the operating system is given the name of the device and the mount

point"
  the file system type is either provided, or the OS inspect the

structure and determines it"
  next, the OS verifies that the device contains a valid file system"
  finally, the OS notes in its directory structure that a file system is

mounted at the specified mount point"

EECE 315 PPTSet10 – File System Interface
10-30!

File System Mounting (cont)
  For example:"

Existing system Unmounted volume

mount point

EECE 315 PPTSet10 – File System Interface
10-31!

File System Examples
  MS Windows maintains an extended two-level directory structure, with

devices and volumes assigned drive letter."
  the path to a specific file takes the form of "

 drive-letter:\path\to\file!
  A file system may be mounted anywhere in the directory tree, just as

UNIX does"
  Windows automatically discover all devices and mount all located file

system at boot time."
  In UNIX the mount commands are explicit"

  a system configuration file contains a list of devices and mount points
for automatic mounting at boot time"
 other mounts may be executed manually"

  Mac OS X behaves much like BSD UNIX: all file systems are
automatically mounted under /Volumes directory"
 The GUI though shows the file systems as if they were all

mounted at the root level"

EECE 315 PPTSet10 – File System Interface
10-32!

Overview
  File Concept"
  Access Methods"

  Directory Structure"
"
  File-System Mounting"
  File Sharing"

  Protection!

EECE 315 PPTSet10 – File System Interface
10-33!

Protection
  When information is stored in a computer system, we want to keep it safe"

  from physical damage (the issue of reliability) and "
  improper access (the issue of protection) "

  Reliability is generally provided by duplicate copies of files (backup)"
  The need to protect files is a direct result of the ability to access files"

  Protection mechanisms provide controlled access by limiting the types
of file access that can be made. Several types of operations may be
controlled:"
 Read: read from the file"
 Write: write or rewrite the file"
 Execute: load the file into memory and execute it"
 Append: write new information at the end of the file"
 Delete: delete the file and free its space for possible reuse"
 List: list the name and attribute of the file"

EECE 315 PPTSet10 – File System Interface
10-34!

Access Lists and Groups
  The most common approach to the protection problem is to make access dependent

of the identity of the user"
  The most general scheme to implement identity dependent access is to

associate with each file and directory an access-control list (ACL)"
  Since constructing such a list is tedious, many systems use a condensed version of

the access list, based on the following three classification"
  owner: the user who created the file "
  group: a set of users who may need to share the file "
  universe: all other users"

  In the Unix system, these three classes of users are defined by three fields of 3 bits
each, rwx!
" " " " "rwx"
" "a) owner access "e.g. 7 "⇒ "111  
 

" " " "rwx"
" "b) group access "e.g. 6 " ⇒ "110  
"
" " " " "rwx"
" "c) public access "e.g. 1 " ⇒ "001"

examples:

r: read access
w: write access
x: execution
 access

EECE 315 PPTSet10 – File System Interface
10-35!

Overview
  File Concept"
  Access Methods"

  Directory Structure"
"
  File-System Mounting"
  File Sharing"

  Protection"

