8 - File System
Interface

S
EECE 315 (101) ==

ECE — UBC
2013 W2

Acknowledgement: This set of slides is partly based on the PPTs provided by the Wiley’s companion website (including textbook
images, when not explicitly mentioned/referenced).

EECE 315-L10 10-1

Overview

B File Concept
B Access Methods

B Directory Structure

B File-System Mounting
M File Sharing

B Protection

EECE 315 PPTSet10 - File System Interface 10-2

Overview

B File system is one the most visible aspects of an OS

® it provides the mechanism for on-line storage of and access to
both data and programs

B the file system consists of two distinct parts:
® a collection of files
» each storing related data
® and a directory structure

» which organizes and provides information about all the files in
the system

B File systems live on device (e.g. hard disk)

EECE 315 PPTSet10 - File System Interface 10-3

Concept of File

B The concept of file is extremely general:

® The OS abstracts from the physical properties of its storage devices to
define a logical storage unit, the file

® A fileis a named collection of related information that is recorded on
secondary storage

® From a user’s perspective, a file is the smallest allotment of logical
secondary storage

® A file represents programs and data:

» Everything must be within a file to be written to the secondary
storage

» A data file may be numeric, alphabetic, alphanumeric, or binary

» A file is a sequence of bits, bytes, lines or records, the meaning of
which is defined by the file’s creator and user

» A file may be free form or may have a certain defined structure,
which depends on its type

EECE 315 PPTSet10 - File System Interface 10-4

File Attributes

B Directory listing example: the following is the output result using the “Is —I”
command in Unix/Linux (in Windows/Linux, a similar command is “dir”):

rw-rw-r-- 1 pbg staff 31200 Sep308:30 intro.ps
drwx------ Jpbg staff 12 Jul809.33 private/
drwxrwxr-x 2 pbg staff 312 Jul 809:35 doc/
drwxrwx--- 2pbg student 512 Aug3 14:13 student-proj/
-IW-I--I-- [pbg staff 9423 Feb 242003 program.c
-rwxr-xr-x I pbg staff 20471 Feb 24 2003 program
drwx--x--x ~ 4pbg faculty 512 Jul 3110:31 lib/
drwx------ 3pbg staff 1024 Aug 29 06:52 mail/
drwxrwxrwx 3 pbg staff S12 Jul809:35 test/
s | O ke fle/drecoy
directories group date/time

EECE 315 PPTSet10 - File System Interface 10-5

File Attributes (cont)

B A file’s attributes vary from one OS to another but typically consist of:
® Name
» a file is named, for the convenience of its human user, e.g. myfile.c
» in some OS, a hame is case-sensitive.

» the name attribute is the only information kept in human-readable
form

Identifier — a unique tag (number) that identifies file within the file
system

Type — an info needed for systems that support different types
Location — a pointer to a device and the file location on that device

Size — the current file size (in bytes, words, or blocks)
Protection — controls who can do reading, writing, executing

Time, date, and user identification — data for protection, security, and
usage monitoring

B Information about all files is kept in the directory structure, which is
maintained on the disk

EECE 315 PPTSet10 - File System Interface 10-6

File Operations

B A File is an abstract data type. To define a file properly, we need to
consider the operations that can be performed on files.

® Creating a file: Two steps are necessary to create a file
» space must be found in the file system
» an entry must be created in the directory

® Writing a file: To write to a file, we use a system call that specifies
the name of the file and the information to be written to the file. The
system must keep a write pointer to the location in the file where the
next write is to take place

® Reading a file: To read from a file, we use a system call that
specifies the name of the file and where the next block of the file
should be put (in memory)

» because a process is either reading from or writing to a file, the
current operation location can be kept as a per-process current-
file-position pointer

EECE 315 PPTSet10 - File System Interface 10-7

File Operations (cont)

B Cont:
® Repositioning within file (file seek): repositioning the current-file-
position pointer
® Deleting a file: To delete the file, we search the directory for the

named file. Having found it, we release all file space, and erase the
directory entry

® Truncating a file: The user may want to erase the contents of a file
but keep its attributes. This function allows all attributes remain
unchanged except for file length

B Other operations are also possible: appending, renaming, ...

B Most of the file operations mentioned involve searching the directory for
the entry associated with the name file

@ to avoid this constant searching, many systems require that an
open () system call be made before a file is first used actively

® the OS keeps a small table, called the open-file table, containing
information about all open files

EECE 315 PPTSet10 - File System Interface 10-8

File Operations (cont)

B When a file operation is requested, the file is specified via an index into
the open-file table, so no searching is required

® when the file is no longer being actively used, it is closed by the
process and the OS removes its entry form the table

B System calls:
® Open()— search the directory structure on disk to find the entry, and
move the content of entry to memory
® Close () — move the content of the entry in memory to directory
structure on disk

B Some systems though implicitly open a file when the first reference to it
is made
® The file is automatically closed when the job or program that opened
the file terminates

EECE 315 PPTSet10 - File System Interface 10-9

Open Files

B Several pieces of data are needed to manage open files:
@ File pointer

» on systems that do not include a file offset as part of the read ()
and write () operation, the system must track the last read/write
location as a current-file-position pointer

» this pointer is unique to each process operating on the file
@ File-open count: is the counter of the number of times a file is open.

» because multiple processes may have opened a file, the system
must wait for the last file to close before removing the open-file
table entry

® Disk location of the file: cache of data access information. This info
IS needed to locate the file on disk and is kept in memory.

® Access rights: each process opens a file in an access mode. This
info is stored on the per-process table to allow/deny subsequent I/O

EECE 315 PPTSet10 - File System Interface
10-10

Open File Locking

B Some OS provide facilities for locking an open file (or section of a file)

B File locks allow one process to lock a file and prevent other processes
from gaining access to it

o files locks are useful for files that are shared by several processes

» a shared lock: several processes can acquire the lock
concurrently

» an exclusive lock: only one process at a time can acquire the
lock

B OS may provide either mandatory or advisory file locking mechanism:

® Mandatory — access is denied depending on locks held and
requested

® Advisory — processes can find status of locks and decide what to
do

EECE 315 PPTSet10 - File System Interface 10-11

File Types - Name, Extension

B If an OS recognizes the type

of a file, it can then operate
on the file in reasonable ways

A common technique for
implementing file types is to
include the type as part of the
file name:

® The name is split into two
parts: a name and an
extension, separated by a
period

UNIX uses a crude magic
number stored at the
beginning of some files to
indicate roughly the type of
the file

file type usual extension function
executable exe, com, bin ready-to-run machine-
or none language program
object obj, o compiled, machine

language, not linked

source code

C, CC, java, pas,
asm, a

source code in various
languages

batch bat, sh commands to the command
interpreter
text txt, doc textual data, documents
word processor| wp, tex, rf, various word-processor
doc formats
library lib, a, so, dll libraries of routines for
programmers
print or view ps, pdf, jpg ASCII or binary file in a
format for printing or
viewing
archive arc, zip, tar related files grouped into
one file, sometimes com-
pressed, for archiving
or storage
multimedia mpeg, mov, rm, | binary file containing
mp3, avi audio or A/V information
EECE 315 PPTSet10 - File System Interface

10-12

File Structure

B File types also can be used to indicate the internal structure of the file

® source and object files have structures that match the expectations of
the programs that read them

® certain files must conform to a required structure that is understood by
the OS

» €.g. an executable file have a specific structure

B Most OSs (UNIX, Mac, MS-DOS, ...) impose (and support) a minimal
number of file structures

® this is to reduce the size of the OS and to improve its support for
different file structures

@ all OS though must support at least one structure — that is an
executable file

® e.g. UNIX considers each file to be a sequence of 8-bit bytes; no
interpretation of these bits is made by the OS

» this scheme provides maximum flexibility but little support

EECE 315 PPTSet10 - File System Interface
10-1

Overview

B File Concept
B Access Methods

B Directory Structure

B File-System Mounting
M File Sharing

B Protection

EECE 315 PPTSet10 - File System Interface
10-14

Access Methods

B Files store information. When it is used, this information must be accessed
and read into computer memory

B The info in the file can be accessed in several ways

® Sequential Access:

»

»

it is the simplest method

in this mode, information in the file is processed in order, one
record after the other

it is the most common method, e.g. in editors or compilers
read next. reads the next portion of file and advances a file pointer

write next. appends to the end of the file and advances to the end

of the newly written material (new end of file)

- current position
beginning P end

g (o \yind =—

—read or write =)

EECE 315 PPTSet10 - File System Interface
10-15

Access Methods (cont)

B Cont

® Direct Access (relative access):

» a file is made up of fixed-length logical records that allow programs
to read and write records rapidly in no particular order

» this model is based on the disk model of a file, since disks allow

random access to any file block

» the block number provided by the user to the OS for the access is a
relative block number (i.e. an index relative to the beginning of the

file)

Fig: simulation
of sequential
access on a
direct-access file

sequential access

implementation for direct access

reset cp = 0;

read next read cp;
cp=cp+ 1;

write next write cp;
cp=cp+ 1;

EECE 315

PPTSet10 - File System Interface
10-16

Other Access Methods

B Other access methods can be build on top of a direct-access method

® these method generally involve the construction of an index for the file
® the index contains pointers to various blocks

® to find a record in the file, we first search the index and then use the
pointer to access the file directly and to find the desired record

B Example of Index and Relative Files

logical record
last name number

Adams
Arthur
Asher smith, john [social-security| age
Smith
index file relative file

EECE 315 PPTSet10 - File System Interface
10-17

Overview

B File Concept
B Access Methods

B Directory Structure

B File-System Mounting
M File Sharing

B Protection

EECE 315 PPTSet10 - File System Interface
10-18

Disk and Directory Structure

B Each entity containing a file system is generally known as a volume

® each volume that contains a file system must also contain information
about the files in the system

® this information is kept in entries in a device directory (directory for
short) or volume table of contents

B A directory can be viewed as a symbol table that translates file names
into their directory entries

Directory Q Q Q Q Q

Files
F4
F1| |F2| |g4

Fn

EECE 315 PPTSet10 - File System Interface
10-10

Operations Performed on Directory

B The directory itself can be organized in many ways

® we want to be able to insert entries, to delete entries, to reach for
a named entry, ...

B When considering a particular directory structure, the following
operations can be performed on a directory:

® Search for a file

® Create a file

® Delete afile

® List a directory

® Rename afile

® Traverse the file system (e.g. backup copy)

EECE 315 PPTSet10 - File System Interface
10-20

Directory (cont)

B Directories are used to organize files in a file system.

® to improve efficiency: locating a file quickly

® for naming: convenient to users

» two users can have the same name for different files
» the same file can have several different names

® to group files: logical grouping of files by properties, (e.g., all
Java programs, all games, ...)

EECE 315 PPTSet10 - File System Interface
10-21

Single-Level Directory

B Now we look at the most common schemes for defining the logical
structure of a directory

B The simplest directory structure is single-level directory:
@ all files are contained in the same directory for all users

directory ce;] boil q tea daa m;] co;I he;]reco;l

files

B Single-level directory has significant limitations:
® Naming
@ Grouping

EECE 315 PPTSet10 - File System Interface
10-29

Two-Level Directory

B In the two-level directory structure, each user has his/her user file
directory (UFD)

® the UFDs have similar structures but each lists only the files of a
single user

® when a user logs on (or user job starts), the system’s master file

directory (MFD) is search which is indexed by user name or account
number

® when a user refers to a particular file, only his won UFD is searched

master file

directory user 1| user 2| user 3| user4

N

test data test data

PRI RNY

EECE 315 PPTSet10 - File System Interface
10-2°

user file
directory

Two-Level Directory (cont)

B The two-level directory solves the name-collision problem

® this structure isolates one user from another,

® if access is permitted, then one user must have the ability to name a
file in another user’s directory

B A two-level directory can be thought of as a tree of height 2:

® the root is the MFD and the UFDs are its direct descendants
B Every file in the system has a path name

® a user name and a file name define the path name

B For example, to access file named test of userB, it can be referred to as /
userB/test

® additional syntax may be used to specify the volume:
» e.g. C:\userB\test (using a letter: in MS-DOS)
» or the volume can be treated as a part of the directory name

B Efficient searching: the sequence of directories searched when a file is
named is called the search path
m Still, this method does not have grouping capability

EECE 315 PPTSet10 - File System Interface
10-24

Tree-Structured Directories

B A natural generalization is to extend the directory structure to a tree of
arbitrary height

® atree is the most common directory structure

B This generalization would allow users to create their own subdirectories
and to organize their files accordingly.

root | spell bin Iprogramsl

files

stat | mail | dist find | count morder o mail

TR / o

directory or
subdirectory

prog | copy reorder count

\\\o T2 J> [

spell last

56656866

EECE 315 PPTSet10 - File System Interface
10-25

Tree-Structured Directories (Cont)

B In this structure, we achieve:

@ Efficient searching
® Grouping Capability
B Each process has a current directory

@ the current directory should have most of the files that are of current
interest or

® the user should specify a path name or change the current directory

B The initial current directory of the login shell is designated when the user
logs in

B Path names can be absolute or relative

® an absolute path name begins at the root and follows a path down to
the specified file

» e.g. C:\users\userB\documents\myfile.c
@ arelative path name defines a path from the current directory
» e.g. ..\documents\myfile.c

EECE 315 PPTSet10 - File System Interface
10-26

Acyclic-6raph Directories

B A tree structure prohibits sharing of files or directories.

B An acyclic graph (i.e. a graph with no cycles) allows directories to share
subdirectories and files

® a shared directory or file will exist in file system in two (or more) places
at once

root | dict | spell

B Acommon way (e.g. in UNIX) is to
create a new directory entry called / \

a link to implement shared files and p .
ist all w |count count|words| list

subdirectories
® alink is effectively a pointer to é) \‘O/ é

another file or subdirectory

® alink is resolved by using the |
path name to locate the real list | rade | w7

file :é 6 é

EECE 315 PPTSet10 - File System Interface
10-27

Y

Overview

B File Concept
B Access Methods

B Directory Structure

B File-System Mounting
M File Sharing

B Protection

EECE 315 PPTSet10 - File System Interface
10-28

File System Mounting

B A file system must be mounted before it can be accessed

® an analogy is a file that must be opened before it is used
B An unmounted file system is mounted at a mount point

@ typically a mount point is an empty directory

B The mount procedure is straightforward:

® the operating system is given the name of the device and the mount
point

» the file system type is either provided, or the OS inspect the
structure and determines it

® next, the OS verifies that the device contains a valid file system

e finally, the OS notes in its directory structure that a file system is
mounted at the specified mount point

EECE 315 PPTSet10 - File System Interface
10-20

File System Mounting (cont)

B For example:

users

doc .
sue jane

Existing system Unmounted volume

(a) (b)

/ mount point

EECE 315 PPTSet10 - File System Interface
10-20

File System Examples

B MS Windows maintains an extended two-level directory structure, with
devices and volumes assigned drive letter.

@ the path to a specific file takes the form of
drive-letter:\path\to\file

® A file system may be mounted anywhere in the directory tree, just as
UNIX does

® Windows automatically discover all devices and mount all located file
system at boot time.

B In UNIX the mount commands are explicit

® a system configuration file contains a list of devices and mount points
for automatic mounting at boot time

» other mounts may be executed manually

® Mac OS X behaves much like BSD UNIX: all file systems are
automatically mounted under /Volumes directory

» The GUI though shows the file systems as if they were all
mounted at the root level

EECE 315 PPTSet10 - File System Interface
10-31

Overview

B File Concept
B Access Methods

B Directory Structure

B File-System Mounting
M File Sharing

B Protection

EECE 315 PPTSet10 - File System Interface
10-392

Protection

B When information is stored in a computer system, we want to keep it safe
® from physical damage (the issue of reliability) and
® improper access (the issue of protection)

B Reliability is generally provided by duplicate copies of files (backup)

B The need to protect files is a direct result of the ability to access files

® Protection mechanisms provide controlled access by limiting the types
of file access that can be made. Several types of operations may be
controlled:

» Read: read from the file

» Write: write or rewrite the file

» Execute: load the file into memory and execute it

» Append: write new information at the end of the file

» Delete: delete the file and free its space for possible reuse
» List: list the name and attribute of the file

EECE 315 PPTSet10 - File System Interface
10-32

Access Lists and Groups

B The most common approach to the protection problem is to make access dependent
of the identity of the user
® The most general scheme to implement identity dependent access is to
associate with each file and directory an access-control list (ACL)
B Since constructing such a list is tedious, many systems use a condensed version of
the access list, based on the following three classification
® owner: the user who created the file
® group: a set of users who may need to share the file
® universe: all other users
M In the Unix system, these three classes of users are defined by three fields of 3 bits
each, rwx
examples: . :V;D;
S AR T a) owner access e.g.
-IW-TW-I-- =) 9 =
i ' r: read access |
UrWX-=---- | WX | w: write access !
i b) group access eg.6 = 110 ' x: execution |
ArWXIWXI-X - | access
| rwx T
ArWXTWX-=- c) public access eg.1 = 001
LWL ==]=~

EECE 315 PPTSet10 - File System Interface
10-24

Overview

B File Concept
B Access Methods

B Directory Structure

B File-System Mounting
M File Sharing

B Protection

EECE 315 PPTSet10 - File System Interface
10-35

