
Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

9 – File System
Implementation

EECE 315 (101)

ECE – UBC
2013 W2

Acknowledgement: This set of slides is partly based on the PPTs provided by the Wiley’s companion website (including textbook
images, when not explicitly mentioned/referenced).

12.2! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

 Chapter 12: File System Implementation

  File-System Structure!
  File-System Implementation "
  Directory Implementation"
  Allocation Methods"
  Free-Space Management "
  Efficiency and Performance"
  Recovery"

12.3! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

File-System Structure

  File structure"
  Logical storage unit"
  Collection of related information"

  File system resides on secondary storage (disks)"
  Provided user interface to storage, mapping logical to physical"
  Provides efficient and convenient access to disk by allowing

data to be stored, located retrieved easily"
  Disk provides in-place rewrite and random access"

  I/O transfers performed in blocks of sectors (usually 512
bytes)"

  File control block – storage structure consisting of information
about a file"

  Device driver controls the physical device "
  File system organized into layers"

12.4! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Layered File System

12.5! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

File System Layers

  Device drivers manage I/O devices at the I/O control layer"
  Given commands like “read drive1, cylinder 72, track 2, sector

10, into memory location 1060” outputs low-level hardware
specific commands to hardware controller!

  Basic file system given command like “retrieve block 123”
translates to device driver"

  Also manages memory buffers and caches (allocation, freeing,
replacement) "
  Buffers hold data in transit"
  Caches hold frequently used data!

  File organization module understands files, logical address, and
physical blocks"
  Translates logical block # to physical block #"
  Manages free space, disk allocation"

12.6! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

File System Layers (Cont.)

  Logical file system manages metadata information"
  Translates file name into file number, file handle, location by

maintaining file control blocks (inodes in UNIX)"
  Directory management"
  Protection"

  Layering useful for reducing complexity and redundancy, but
adds overhead and can decrease performanceTranslates file
name into file number, file handle, location by maintaining file
control blocks (inodes in UNIX)"
  Logical layers can be implemented by any coding method

according to OS designer"

12.7! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

File System Layers (Cont.)
  Many file systems, sometimes many within an operating

system"
  Each with its own format (CD-ROM is ISO 9660; Unix has

UFS, FFS; Windows has FAT, FAT32, NTFS as well as
floppy, CD, DVD Blu-ray, Linux has more than 40 types,
with extended file system ext2 and ext3 leading; plus
distributed file systems, etc.)"

  New ones still arriving – ZFS, GoogleFS, Oracle ASM,
FUSE"

"

12.8! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

 Chapter 12: File System Implementation

  File-System Structure"
  File-System Implementation !
  Directory Implementation"
  Allocation Methods"
  Free-Space Management "
  Efficiency and Performance"
  Recovery"

12.9! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

File-System Implementation

  We have system calls at the API level, but how do we implement
their functions?"
  On-disk and in-memory structures"

  Boot control block contains info needed by system to boot OS
from that volume"
  Needed if volume contains OS, usually first block of volume"

  Volume control block (superblock, master file table) contains
volume details"
  Total # of blocks, # of free blocks, block size, free block

pointers or array"
  Directory structure organizes the files"

  Names and inode numbers, master file table"

12.10! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

File-System Implementation (Cont.)

  Per-file File Control Block (FCB) contains many details about
the file"
  inode number, permissions, size, dates"
  NFTS stores into in master file table using relational DB

structures"

12.11! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

In-Memory File System Structures

  Mount table storing file system mounts, mount points, file
system types"

  The following figure illustrates the necessary file system
structures provided by the operating systems"

  Figure 12-3(a) refers to opening a file"
  Figure 12-3(b) refers to reading a file"
  Plus buffers hold data blocks from secondary storage"
  Open returns a file handle for subsequent use"
  Data from read eventually copied to specified user process

memory address"

12.12! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

In-Memory File System Structures

12.13! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Partitions and Mounting

  Partition can be a volume containing a file system (“cooked”) or
raw – just a sequence of blocks with no file system"

  Boot block can point to boot volume or boot loader set of blocks that
contain enough code to know how to load the kernel from the file
system"
  Or a boot management program for multi-os booting"

  Root partition contains the OS, other partitions can hold other
Oses, other file systems, or be raw"
  Mounted at boot time"
  Other partitions can mount automatically or manually"

  At mount time, file system consistency checked"
  Is all metadata correct?"

  If not, fix it, try again"
  If yes, add to mount table, allow access"

12.14! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Virtual File Systems

  Virtual File Systems (VFS) on Unix provide an object-oriented
way of implementing file systems"

  VFS allows the same system call interface (the API) to be used
for different types of file systems"
  Separates file-system generic operations from

implementation details"
  Implementation can be one of many file systems types, or

network file system"
  Implements vnodes which hold inodes or network file

details"
  Then dispatches operation to appropriate file system

implementation routines"

12.15! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Virtual File Systems (Cont.)
"

  The API is to the VFS interface, rather than any specific type of
file system"

12.16! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Virtual File System Implementation

  For example, Linux has four object types:"
  inode, file, superblock, dentry"

  VFS defines set of operations on the objects that must be
implemented"
  Every object has a pointer to a function table"

 Function table has addresses of routines to implement that
function on that object"

 For example:"
  • int open(. . .)—Open a file"
  • int close(. . .)—Close an already-open file"
  • ssize t read(. . .)—Read from a file"
  • ssize t write(. . .)—Write to a file"
  • int mmap(. . .)—Memory-map a file"

12.17! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

 Chapter 12: File System Implementation

  File-System Structure"
  File-System Implementation "
  Directory Implementation!
  Allocation Methods"
  Free-Space Management "
  Efficiency and Performance"
  Recovery"
  NFS"
  Example: WAFL File System"

12.18! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Directory Implementation

  Linear list of file names with pointer to the data blocks"
  Simple to program"
  Time-consuming to execute"

 Linear search time"
 Could keep ordered alphabetically via linked list or use B

+ tree"
  Hash Table – linear list with hash data structure"

  Decreases directory search time"
  Collisions – situations where two file names hash to the

same location"
  Only good if entries are fixed size, or use chained-overflow

method"

12.19! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

 Chapter 12: File System Implementation

  File-System Structure"
  File-System Implementation "
  Directory Implementation"
  Allocation Methods!
  Free-Space Management "
  Efficiency and Performance"
  Recovery"
  NFS"
  Example: WAFL File System"

12.20! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Allocation Methods - Contiguous

  An allocation method refers to how disk blocks are allocated for
files:"

  Contiguous allocation – each file occupies set of contiguous
blocks"
  Best performance in most cases"
  Simple – only starting location (block #) and length (number

of blocks) are required"
  Problems include finding space for file, knowing file size,

external fragmentation, need for compaction off-line
(downtime) or on-line!

12.21! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Contiguous Allocation

  Mapping from logical to physical"

LA/512"

Q"

R"

Block to be accessed = Q +
starting address"
Displacement into block = R"

12.22! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Extent-Based Systems

  Many newer file systems (i.e., Veritas File System) use a
modified contiguous allocation scheme"

  Extent-based file systems allocate disk blocks in extents"

  An extent is a contiguous block of disks"
  Extents are allocated for file allocation"
  A file consists of one or more extents"

12.23! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Allocation Methods - Linked
  Linked allocation – each file a linked list of blocks"

  File ends at nil pointer"
  No external fragmentation"
  Each block contains pointer to next block"
  No compaction, external fragmentation"
  Free space management system called when new block

needed"
  Improve efficiency by clustering blocks into groups but

increases internal fragmentation"
  Reliability can be a problem"
  Locating a block can take many I/Os and disk seeks"

"

12.24! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Linked Allocation

  Each file is a linked list of disk blocks: blocks may be scattered
anywhere on the disk"

pointer"block ="

"
  Mapping"

Block to be accessed is the Qth block in the linked chain of blocks
representing the file."
"
Displacement into block = R + 1"

LA/511"
Q"

R"

12.25! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Linked Allocation

12.26! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Allocation Methods – FAT
  FAT (File Allocation Table) variation"

  Beginning of volume has table, indexed by block number"
  Much like a linked list, but faster on disk and cacheable "
  New block allocation simple"

"

12.27! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

File-Allocation Table

12.28! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Allocation Methods - Indexed

  Indexed allocation!
  Each file has its own index block(s) of pointers to its data blocks"

  Logical view"

index	 table

12.29! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of Indexed Allocation

12.30! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Indexed Allocation (Cont.)

  Need index table"

  Random access"

  Dynamic access without external fragmentation, but have overhead
of index block"

  Mapping from logical to physical in a file of maximum size of 256K
bytes and block size of 512 bytes. We need only 1 block for index
table"

LA/512"
Q"

R"

Q = displacement into index table"
R = displacement into block"

12.31! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Indexed Allocation – Mapping (Cont.)

  Mapping from logical to physical in a file of unbounded length (block
size of 512 words)"

  Linked scheme – Link blocks of index table (no limit on size)"

LA / (512 x 511)"
Q1"

R1"
Q1 = block of index table"
R1 is used as follows:"

R1 / 512"
Q2"

R2"

Q2 = displacement into block of index table"
R2 displacement into block of file:"

12.32! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Indexed Allocation – Mapping (Cont.)

  Two-level index (4K blocks could store 1,024 four-byte pointers in outer
index -> 1,048,567 data blocks and file size of up to 4GB)"

LA / (512 x 512)"
Q1"

R1"

Q1 = displacement into outer-index"
R1 is used as follows:"

R1 / 512"
Q2"

R2"

Q2 = displacement into block of index table"
R2 displacement into block of file:"

12.33! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Indexed Allocation – Mapping (Cont.)

12.34! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Performance

  Best method depends on file access type"
  Contiguous great for sequential and random"

  Linked good for sequential, not random"
"
  Indexed more complex"

  Single block access could require 2 index block reads then
data block read"

  In general, indexed is better for random access than Linked,
but not better than sequential"

  Indexed, Linked are better at supporting file additions/removals"

12.35! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Performance: Exercise

  Consider a file having 100 blocks. Assume that the file control
block (or index block if indexed) is always in memory. Calculate
how many disk I/O operations are required for each of the
following operations for contiguous, linked and indexed (single-
level) organization. Assume that the contiguous allocation allows
files to grow unhindered at the end, but not at the beginning. "
 1. Block is added at the beginning"
 2. Block is added in the middle"
 3. Block is added at the end"
 4. Block is removed from the beginning"
 5. Block is removed from the middle"
 6. Block is removed from the end"

12.36! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Combined Scheme: UNIX UFS

What’s the maximum number of index blocks that you can access
with this scheme ? What’s the maximum file size ?

4K bytes per block, 32-bit addresses. Assume 12 direct blocks.

12.37! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

 Chapter 12: File System Implementation

  File-System Structure"
  File-System Implementation "
  Directory Implementation"
  Allocation Methods"
  Free-Space Management !
  Efficiency and Performance"
  Recovery"
  NFS"
  Example: WAFL File System"

12.38! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Free-Space Management

  File system maintains free-space list to track available blocks/clusters"
  (Using term “block” for simplicity)"

  Bit vector or bit map (n blocks)"

…"

0" 1" 2" n-1"

bit[i] ="

"

1 ⇒ block[i] free"
0 ⇒ block[i] occupied"

Block number calculation"

(number of bits per word) *"
(number of 0-value words) +"
offset of first 1 bit"

CPUs have instructions to return offset within word of first “1” bit"

12.39! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Free-Space Management (Cont.)

  Bit map requires extra space"
  Example:"

" "block size = 4KB = 212 bytes"
" "disk size = 240 bytes (1 terabyte)"
" "n = 240/212 = 228 bits (or 225 bytes)"
" "Number of blocks = 225 / 212 = 213"

"

  How many blocks will the bitmap take for a 1 GB disk with 512
byte blocks ? "

 "

12.40! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Linked Free Space List on Disk
 "

  Linked list (free list)"
  Cannot get contiguous

space easily"
  No waste of space"
  No need to traverse the

entire list (if # free blocks
recorded)"

12.41! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Free-Space Management (Cont.)

  Grouping "
  Modify linked list to store address of next n-1 free blocks in first

free block, plus a pointer to next block that contains free-block-
pointers (like this one)"

  Counting"
  Because space is frequently contiguously used and freed, with

contiguous-allocation allocation, extents, or clustering"
 Keep address of first free block and count of following free

blocks"
 Free space list then has entries containing addresses and

counts"

12.42! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Free-Space Management (Cont.)

  Space Maps"
  Used in ZFS!
  Consider meta-data I/O on very large file systems"

 Full data structures like bit maps couldn’t fit in memory ->
thousands of I/Os"

  Divides device space into metaslab units and manages metaslabs"
 Given volume can contain hundreds of metaslabs"

  Each metaslab has associated space map"
 Uses counting algorithm"

  But records to log file rather than file system"
 Log of all block activity, in time order, in counting format"

  Metaslab activity -> load space map into memory in balanced-tree
structure, indexed by offset"
 Replay log into that structure"
 Combine contiguous free blocks into single entry"

12.43! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

 Chapter 12: File System Implementation

  File-System Structure"
  File-System Implementation "
  Directory Implementation"
  Allocation Methods"
  Free-Space Management !
  Efficiency and Performance!
  Recovery"

12.44! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Efficiency and Performance

  Efficiency dependent on:"
  Disk allocation and directory algorithms"
  Types of data kept in file’s directory entry"
  Pre-allocation or as-needed allocation of metadata

structures"
  Fixed-size or varying-size data structures 
"

12.45! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Efficiency and Performance (Cont.)

  Performance"
  Keeping data and metadata close together"
  Buffer cache – separate section of main memory for frequently

used blocks"
  Synchronous writes sometimes requested by apps or needed

by OS"
 No buffering / caching – writes must hit disk before

acknowledgement"
 Asynchronous writes more common, buffer-able, faster"

  Free-behind and read-ahead – techniques to optimize
sequential access"

  Reads frequently slower than writes"
 
"

12.46! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Page Cache

  A page cache caches pages rather than disk blocks using virtual
memory techniques and addresses"

  Memory-mapped I/O uses a page cache"

  Routine I/O through the file system uses the buffer (disk) cache"

  This leads to the following figure"

12.47! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

I/O Without a Unified Buffer Cache

12.48! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Unified Buffer Cache

  A unified buffer cache uses the same page cache to cache
both memory-mapped pages and ordinary file system I/O to
avoid double caching!

  But which caches get priority, and what replacement
algorithms to use?"

12.49! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

I/O Using a Unified Buffer Cache

12.50! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

 Chapter 12: File System Implementation

  File-System Structure"
  File-System Implementation "
  Directory Implementation"
  Allocation Methods"
  Free-Space Management "
  Efficiency and Performance"
  Recovery!

12.51! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Recovery

  Consistency checking – compares data in directory structure
with data blocks on disk, and tries to fix inconsistencies"
  Can be slow and sometimes fails 
"

  Use system programs to back up data from disk to another
storage device (magnetic tape, other magnetic disk, optical) 
"

  Recover lost file or disk by restoring data from backup"

12.52! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Log Structured File Systems
  Log structured (or journaling) file systems record each metadata

update to the file system as a transaction"

  All transactions are written to a log"
  A transaction is considered committed once it is written to the

log (sequentially)"
  Sometimes to a separate device or section of disk"
  However, the file system may not yet be updated"

  The transactions in the log are asynchronously written to the file
system structures"
  When the file system structures are modified, the transaction is

removed from the log"

  If the file system crashes, all remaining transactions in the log must
still be performed"

  Faster recovery from crash, removes chance of inconsistency of
metadata"

12.53! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

 Chapter 12: File System Implementation

  File-System Structure"
  File-System Implementation "
  Directory Implementation"
  Allocation Methods"
  Free-Space Management "
  Efficiency and Performance"
  Recovery"

