EECE 315: Review Session

Lecture 11

What will we cover this class?

- Quick overview of each topic
 - 2-3 slides per topic + common mistakes/gotchas
- I will answer questions on each topic during the session. Do not wait to ask questions at the end.

- The exam may test you on material that is not covered in this class (so read the whole notes)
 - However, we will touch upon all topics in the review

Final Exam Topics

- System Architecture
- Processes and Threads
- Synchronization
- Scheduling
- Memory Protection
- Virtual memory
- File Systems Interface and Implementation
- Real-time Systems
- Networks and Distributed Systems

System Architecture

- Interrupt handling and management
- Polling versus DMA transfer
- OS structure and functions
- Levels of storage hierarchy
- What happens on a system call

Processes and Threads

- Process and elements of process state
- How does context switching work
- Process creation using fork and wait
- Inter-process communication primitives
- Differences between kernel and user-level threads

Synchronization

- Critical section problem and constraints
- Peterson's algorithm
- Hardware solutions (e.g., TestAndSet)
- Semaphores use and implementation
- Classical synchronization problems

Scheduling

Scheduling criteria: average wait time

Non-preemptive scheduling: FCFS, SJF

Preemptive scheduling: RR, SRTF

Multi-level queues and scheduling classes

Memory Protection

Contiguous memory allocation: Fragmentation

Paging and Paging hardware (TLBs etc.)

Page Table Entries (protection bits)

Multi-level Page Tables (2-level and 3-level)

Virtual Memory

- Demand Paging Concept and implementation
- Page replacement and Belady's anomaly
- FIFO, LRU and Second chance algorithms
- Thrashing and working set tracking
- Memory mapped files and I/O

File Systems Interface

Concepts of files and directories

File access methods and locking

Directory structures and mounting

Protection and permissions

File System Implementation

- File system layers & Virtual File System (VFS)
- File control block and in-memory structures
- File Allocation: Sequential, Linked and Indexed
- Free Space Management: Bitmaps, Linked
- Performance: Unified Vs Separate Buffer Caches

Networks and Distributed Systems

- Characteristics of a distributed system: Pros and Cons
- Difference between Network OS and distributed OS
- Addressing, routing, packet switching and contention management
- Typical network stack: TCP/IP implementation
- Distributed File System: Naming, Transparency, Caching

Some final thoughts

- Prepare well for the exam understand the concepts from first principles, solve all in-class exercises, quizzes. Try the sample exam before looking at solutions (and discussing it)
 - Brush up on basic knowledge of NachOS

 Post questions to Piazza – I will answer questions during exam period until April 15th

The Road Ahead

- UBC Courses
 - EECE 358: Computer
 Communications
 - EECE 411: Distributed Systems
 - EECE 494: Real-time Systems
 - EECE 412: Computer security
 - EECE 417: Software architecture
 - EECE 465: MicrocomputerSystem Design
 - EECE 476: Computer
 Architecture

Software Engineer:
 Rated No. 1 career by
 Wall Street Journal

Requests and Announcements

Teaching evaluations are online

- Please take the time to fill them before April 11th
- I would really appreciate your feedback/comments
- Tell me what you liked or didn't like can benefit future generations of students who take this course
- Department takes these seriously for assessments

Any changes to the grades released so far

Notify us on Piazza before April 9th (Wednesday)