
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.S064 Introduction to Machine Learning

Phase 1: classification (lecture 2)

Learning linear classifiers

During the last lecture we started to explore linear classifiers through origin. These
classifiers were defined as

h(x; θ) = sign
(
θ1x1 + . . .+ θdxd

)
= sign

(
θ · x

)
=

{
+1, θ · x ≥ 0
−1, θ · x < 0

(1)

where θ · x = θTx and θ = [θ1, . . . , θd]
T is a column vector of real valued parameters.

The name linear classifier comes from the fact that the decision boundary is linear (line
in 2d, plane in 3d, etc). Specifically, all x ∈ Rd that satisfy θ · x = 0 lie exactly on
the decision boundary. Another way to understand binary classifiers is to explicitly
evaluate how they divide the space (here Rd) into two regions based on the label. For
linear classifiers, both

X+(θ) = {x ∈ Rd : h(x; θ) = +1} (2)

X−(θ) = {x ∈ Rd : h(x; θ) = −1} (3)

are half-spaces, separated by the decision boundary. Note that, clearly, these half spaces
as well as the decision boundary, depend on how we set θ, i.e., which classifier we choose.

Now that we have chosen a set of classifiers, we still need to choose one of them in
response to the training set of labeled examples Sn = {(x(t), y(t)), t = 1, . . . , n}. For
simplicity, we assume that since our classifiers are linear, i.e., highly constrained, we
can just find one that does well on the training set (we will revisit this issue later). For
example, we could find θ that results in the fewest mistakes on the training set, i.e., we
would minimize the training error

En(θ) =
1

n

n∑
t=1

[[y(t) 6= h(x(t); θ)]] =
1

n

n∑
t=1

[[y(t)(θ · x(t)) ≤ 0]] (4)

where [[·]] returns 1 if the logical expression in the argument is true, and zero otherwise.
The training error here is the fraction of training examples for which the classifier
with parameters θ predicts the wrong label. Note that incorrect prediction happens if
yθ · x ≤ 0, i.e., when the label y does not have the same sign as θ · x or lies exactly
on the decision boundary (which we will count as an error). The training error En(θ) is
calculated as a function of the parameters θ.

1

What would a reasonable algorithm be for finding θ̂ that minimizes En(θ)? Unfor-
tunately, this is not an easy problem to solve in general, and we will have to settle
for an algorithm that approximately minimizes the training error. However, for this
lecture, we consider a special case where there exists a linear classifier (through origin)
that achieves zero training error. This is also known as the realizable case. Note that
“realizability” depends on both the training examples as well as the set of classifiers we
have adopted. Specifically, for linear classifiers, we assume that the training examples
are linearly separable through origin:

Definition: Training examples Sn = {(x(t), y(t)), t = 1, . . . , n} are linearly separable
through origin if there exists a parameter vector θ̂ such that y(t)(θ̂ · x(t)) > 0 for all
t = 1, ..., n.

Here are a couple of examples:

.

.

.

.

+

+
-

-

.

.

.

.

+
+

-

-
linearly separable through origin not linearly separable

The perceptron algorithm

We’ll consider here an algorithm that is mistake driven. In other words, it starts with a
simple classifier, e.g., θ = 0 (zero vector), and successively tries to adjust the parameters,
based on each training example, so as to correct any mistakes. The simplest algorithm
of this type is the so-called perceptron update rule. In this algorithm, we set θ = 0, and
subsequently consider each training example one by one, cycling through all them, and
adjusting the parameters according to:

if y(t) 6= h(x(t); θ(k)) then (5)

θ(k+1) = θ(k) + y(t)x(t) (6)

where θ(k) denotes the parameters after k mistakes (θ(0) = 0). In other words, the
parameters are changed only if we make a mistake, and we track the evolution of the
parameters as a function of the mistakes. These updates do tend to correct mistakes.
Too see this, consider a simple two dimensional example in figure 1. The points x(1) and
x(2) in the figure are chosen such that the algorithm makes a mistake on both of them
during its first pass. As a result, the updates become: θ(0) = 0 and

θ(1) = θ(0) + x(1) (7)

θ(2) = θ(1) + (−1)x(2) (8)

2

In this simple case, both updates result in correct classification of the respective exam-

+x
(1)

✓(1)

✓(1) · x = 0

+x
(1)

✓(1)

-
✓(2) · x = 0

✓(2)

x(2)

(�1)x(2)

-
x(2)

✓(1) · x = 0

Figure 1: The perceptron update rule

ples, and the algorithm would terminate. However, each update can also undershoot in
the sense that the example that triggered the update would be misclassified even after
the update. Can you construct a setting where an update would undershoot?

Let’s look at the updates more algebraically. Note that when we make a mistake
the sign of (θ(k) · x(t)) disagrees with y(t) and the product y(t)(θ(k) · x(t)) is non-positive;
the product is positive for correctly classified images. Suppose we make a mistake on
x(t). Then the updated parameters are given by θ(k+1) = θ(k) + y(t)x(t). If we consider
classifying the same example x(t) after the update, using the new parameters θ(k+1), then

y(t)(θ(k+1) · x(t)) = y(t)(θ(k) + y(t)x(t)) · x(t) (9)

= y(t)(θ(k) · x(t)) + (y(t))2(x(t) · x(t)) (10)

= y(t)(θ(k) · x(t)) + ‖x(t)‖2 (11)

In other words, the value of y(t)(θ · x(t)) increases as a result of the update (becomes
more positive). If we consider the same example repeatedly, then we will necessarily
change the parameters such that the example will be classified correctly, i.e., the value
of y(t)(θ · x(t)) becomes positive. Of course, mistakes on other examples may steer the
parameters in different directions, however, so it may not be clear that the algorithm
converges to something useful if we repeatedly cycle through the training examples. The
algorithm does converge in the realizable case:

Theorem: The perceptron update rule converges after a finite number of mistakes when
the training examples are linearly separable through origin.

We will see later that the number of mistakes that the algorithm makes as it passes
through the training examples depends on how easy or hard the classification task is.
If the training examples are well-separated by a linear classifier (a notion which we will
define formally later), the perceptron algorithm converges quickly, i.e., it makes only a
few mistakes in total until all the training examples are correctly classified.

What if the training examples are not linearly separable? In this case, the algorithm
cannot converge. There would always be a mistake in each pass through the training

3

examples, and the parameters would be changed. Better algorithms exist, and will be
discuss them later on.

Linear classifiers with offset

We extend here the set of linear classifiers slightly by including a scalar offset parameter
θ0. This parameter will enable us to place the decision boundary anywhere in Rd, not
only through the origin. Specifically, a linear classifier with offset, or simply linear
classifier, is defined as

h(x; θ, θ0) = sign
(
θ · x+ θ0) =

{
+1, θ · x+ θ0 ≥ 0
−1, θ · x+ θ0 < 0

(12)

Clearly, if θ0 = 0, we obtain a linear classifier through origin. For a non-zero value of
θ0, the resulting decision boundary θ · x + θ0 = 0 no longer goes through the origin
(see figure 2 below). The hyper-plane (line in 2d) θ · x + θ0 = 0 is oriented parallel to
θ · x = 0. If they were not, then there should be some x that satisfies both equations:
θ · x + θ0 = θ · x = 0. This is possible only if θ0 = 0. We can conclude that vector θ is
still orthogonal to the decision boundary, and also defines the positive direction in the
sense that if we move x in this direction, the value of θ · x + θ0 increases. In the figure
below, θ0 < 0 because we have to move from the origin (where θ ·x = 0) in the direction
of θ (increasing θ · x) until we hit θ · x+ θ0 = 0.

decision boundary

+

-

✓

predicted label = 1

predicted label = -1
✓ · x + ✓0 < 0

✓ · x + ✓0 > 0

✓ · x + ✓0 = 0

Figure 2: Linear classifier with offset parameter

Both linear separability and the perceptron algorithm for learning linear classifiers
generalize easily to the case of linear classifiers with offset. Specifically,

Definition: Training examples Sn = {(x(t), y(t)), t = 1, . . . , n} are linearly separable if
there exists a parameter vector θ̂ and offset parameter θ̂0 such that y(t)(θ̂ · x(t) + θ̂0) > 0
for all t = 1, ..., n.

If training examples are linearly separable through origin, they are clearly also linearly
separable. The converse is not true in general, however. Can you find such an example?

4

The perceptron algorithm is also modified only slightly: initialize θ(0) = 0 (vector)

and θ
(0)
0 = 0 (scalar). Cycle through the training examples t = 1, . . . , n and update

parameters according to

if y(t) 6= h(x(t); θ(k), θ
(k)
0) then (13)

θ(k+1) = θ(k) + y(t)x(t) (14)

θ
(k+1)
0 = θ

(k)
0 + y(t) (15)

Why is the offset parameter updated in this way? Think of it as a parameter associated
with an additional coordinate that is set to 1 for all examples. If training examples
are linearly separable (not necessarily through the origin), then the above perceptron
algorithm converges after a finite number of mistakes.

5

