
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.S064 Introduction to Machine Learning

Phase 1: from classification to regression (lecture 3)

Linear classification: non-separable case

Over the last two lectures, we have talked about linear classifiers, i.e., classifiers that
can be written as

h(x; θ, θ0) = sign(θ · x+ θ0) (1)

with parameters θ ∈ Rd and θ0 ∈ R. Whenever the training examples Sn = {(x(t), y(t)), t =
1, . . . , n} are linearly separable, we can use the perceptron algorithm to find parameters
that do indeed separate the training examples, i.e., achieve zero training error. In other
words, the algorithm finds θ̂, θ̂0 such that

En(θ̂, θ̂0) =
1

n

n∑
t=1

[[y(t)(θ̂ · x(t) + θ̂0) ≤ 0]] = 0 (2)

What happens if the training examples are not linearly separable? The perceptron algo-
rithm will not converge, nor finds the classifier with the smallest training error. In fact,
the problem of minimizing the training error in the non-realizable case is computation-
ally hard. We will try to address these problems here. In order to keep the discussion
simpler, we will drop θ0 as a parameter. It will be easy to add it later.

We will first change how the errors are measured on the training set. What we
minimize on the training set is completely in our control. The goal of minimizing the
test or generalization error, measured by counting mistakes, remains the same. But it
may be helpful to use a slightly different metric on the training set. Loosely speaking,
the idea is to give the classifier a little more feedback in terms of how close its predictions
are to the training labels. We will call the resulting training error empirical risk. It is
defined as the average loss on the training examples or

Rn(θ) =
1

n

n∑
t=1

Loss(y(t)(θ · x(t))) (3)

Note that the loss function here takes as an argument the “agreement” y(t)(θ · x(t))
between the linear predictions θ · x(t) (that we would threshold) and the training labels
y(t). If we wanted to go back to the fraction of mistakes, we would simply define

Loss0/1(z) = [[z ≤ 0]] =

{
1, if z ≤ 0
0, o.w.

(4)

1

This is known as the zero-one loss. We will explore here a different loss function known
as the hinge loss:

Lossh(z) = max{1− z, 0} (5)

The advantage of defining the loss in this way is that it forces the classifier predictions
to be more than just correct. In other words, the agreement z = y(t)(θ · x(t)) should
be ≥ 1 before we attain zero loss. If we reduce the agreement below 1 (or ≤ 0 for
actually misclassified points), the loss increases linearly, and continues to increase the
more incorrect our predictions are. In other words, when y(t)(θ · x(t)) < 1, the loss is
simply 1− y(t)(θ · x(t)).

It remains to come up with an algorithm that minimizes

Rn(θ) =
1

n

n∑
t=1

Lossh(y
(t)(θ · x(t))) =

1

n

n∑
t=1

max
{

1− y(t)(θ · x(t)), 0
}

(6)

with respect to the parameters θ. The hope here is that by minimizing this empirical
risk we actually obtain a better classifier, one that generalizes better. We will address
this question later on in the course. Moreover, it should be possible to find θ̂ that
minimizes Rn(θ) even when the examples are not linearly separable. Fortunately, Rn(θ)
is a convex function of the parameters1. While there may be multiple parameter settings
that all attain the minimum, convexity guarantees here that a simple algorithm will be
able to find one of them.

(Sub-)gradient descent

We will use gradient descent to minimize Rn(θ). To this end, note that the gradient

∇θRn(θ) =

[
∂Rn(θ)

∂θ1
, . . . ,

∂Rn(θ)

∂θd

]T
(7)

points in the direction where Rn(θ) increases. In order to minimize the empirical risk,
we should therefore take a small step in the opposite direction. Indeed, the gradient
descent algorithm simply iteratively updates the parameters according to

θ(k+1) = θ(k) − ηk∇θRn(θ)|θ=θ(k) (8)

where ηk is known as the step-size or learning rate. We will discuss below how the
step-size should be chosen for a stochastic version of this algorithm.

There is one technical issue that we have to address. The function Rn(θ) is not
everywhere differentiable. The hinge loss functions were defined as piece-wise linear

1A convex function f(θ) is any function such that f(λθ + (1− λ)θ′) ≤ λf(θ) + (1− λ)f(θ′) for any
θ, θ′ and λ ∈ (0, 1). Convex functions have a characteristic “bowl” shape.

2

functions. Adding them together, creating Rn(θ), also results in a piece-wise linear
function. So, there will be “kinks”, i.e., points where Rn(θ) is not differentiable. In fact,
at those points, we have several possible gradients and these, collectively, define what
is called the sub-differential. When the function is differentiable, the sub-differential
simply reduces to the typical gradient. For our purposes here, i.e., from the point of
view of minimizing Rn(θ), we only need to select one possible gradient at any point
regardless of how many choices there are. This is easy for us to do since the empirical
risk is a piece-wise linear function. We can just take any gradient right around a “kink”.

Stochastic (sub-)gradient descent

It is often advantageous to use a stochastic version of the gradient descent update. This
is true, e.g., when there are many training examples. So, we select a training example at
random, and perform a parameter update on the basis of the corresponding loss alone
(recall the perceptron rule). If we take small enough steps, these stochastic updates, in
aggregate, move the parameters roughly in the same direction as the gradient descent
rule. Specifically, the algorithm looks like

θ(0) = 0 (vector),
select t ∈ {1, . . . , n} at random,

θ(k+1) = θ(k) − ηk∇θLossh(y
(t)θ · x(t))|θ=θ(k)

(9)

If the agreement y(t)(θ(k) ·x(t)) > 1 then the loss is identically zero and so is the gradient.
No update is made in this case. When y(t)(θ(k) · x(t)) ≤ 1, on the other hand,

∇θLossh(y
(t)θ · x(t))|θ=θ(k) = ∇θ

(
1− y(t)θ · x(t)

)
|θ=θ(k) = −y(t)x(t) (10)

We can therefore rewrite the stochastic sub-gradient descent algorithm in a form that
looks very much like the perceptron algorithm:

θ(0) = 0 (vector),
select t ∈ {1, . . . , n} at random,

if y(t)(θ(k) · x(t)) ≤ 1, then
θ(k+1) = θ(k) + ηky

(t)x(t)

(11)

There are several differences with the perceptron algorithm. First, we use a decreasing
learning rate ηk (later updates will be smaller) rather than set it to one. Adjusting the
learning rate is essential for the algorithm to converge. Second, the “mistake”, i.e., when
the update is made, is now defined in terms of the agreement being less than one (as
opposed to less than zero for the perceptron). Finally, we select the training example to
consider at random rather than cycling through them in order. The random selection
prevents the gradient descent updates from oscillating.

3

So how do we set the learning rate ηk? In our context, ηk = 1/(k + 1) would ensure
that our stochastic sub-gradient descent algorithm converges to the minimum of Rn(θ).
Other choices are possible as well. In fact, any positive learning rate that satisfies

∞∑
k=1

η2k <∞,
∞∑
k=1

ηk =∞ (12)

would permit the algorithm to converge though the speed may vary.
For stochastic gradient descent algorithms, it is often quite beneficial to keep track

of the best solution obtained so far in addition to the current θ(k). In other words, we
would also keep θ(ik), where ik = argmini=1,...,kRn(θ(i)). The empirical risk of the current

solution θ(k), i.e., Rn(θ(k)), goes down in a noisy fashion while Rn(θ(ik)) is monotoni-
cally decreasing (by definition!). If the algorithm is stopped at any point, we should
report θ(ik) (the best solution so far) rather than θ(k). Note that limk→∞Rn(θ(ik)) is not
necessarily zero as the points may not be linearly separable.

Regression

We have so far discussed only learning problems where we try to predict y ∈ {−1, 1}
labels for given feature vectors x ∈ Rd (binary classification). Regression problems are
exactly like classification problems except that we try to predict real valued responses
y ∈ R. For example, we could try to predict the future value of a property based on a
feature representation that includes the size (square footage), location, and so on.

We are looking for functions that map feature vectors x ∈ Rd to real valued responses
y ∈ R. In other words, a regression function is any f : Rd → R, and f(x) specifies the
predicted response to x. As in the classification setting, since the number of training
examples is finite, we must restrict the set of functions F that we entertain. Permitting
all possible regression functions, and selecting one in response to training data, would
again be liable to solutions that generalize poorly.

Linear regression

We will start with linear regression. A linear regression function is simply a linear
function of the feature vectors: f(x; θ, θ0) = θ ·x+θ0. Note that a linear classifier differs
only in that we threshold the resulting value: h(x; θ, θ0) = sign(f(x; θ, θ0)). Here we are
interested in the real value f(x; θ, θ0) directly.

Our learning task is to choose the parameters θ̂ and θ̂0 in response to a training
set Sn = {(x(t), y(t)), t = 1, . . . , n}, where y(t) ∈ R, such that the resulting function
f(x; θ̂, θ̂0) would yield good real valued predictions on yet unseen examples.

4

