
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.S064 Introduction to Machine Learning

Phase 1: linear regression (lecture 4)

Linear regression

A linear regression function is simply a linear function of the feature vectors, i.e.,

f(x; θ, θ0) = θ · x+ θ0 =
d∑
i=1

θixi + θ0 (1)

Each setting of the parameters θ and θ0 gives rise to a slightly different regression
function. Collectively, different parameter choices θ ∈ Rd, θ0 ∈ R, give rise to the
set of functions F that we are entertaining. While this set of functions seems quite
simple, just linear, the power of F is hidden in the feature vectors. Indeed, we can often
construct different feature representations for objects. For example, there are many
ways to map past values of financial assets into a feature vector x, and this mapping is
typically completely under our control. This “freedom” gives us a lot of power, and we
will discuss how to exploit it later on. For now, we assume that a proper representation
has been found, denoting feature vectors simply as x.

Our learning task is to choose one f ∈ F , i.e., choose parameters θ̂ and θ̂0, based
on the training set Sn = {(x(t), y(t)), t = 1, . . . , n}, where y(t) ∈ R (response). As
before, our goal is to find f(x; θ̂, θ̂0) that would yield accurate predictions on yet unseen
examples. There are several problems to address:

(1) How do we measure error? What is the criterion by which we choose θ̂ and θ̂0 based
on the training set?

(2) What algorithm can we use to optimize the training criterion? How does the al-
gorithm scale with the dimension (feature vectors may be high dimensional) or the
size of the training set (the dataset may be large)?

(3) When the size of the training set is not large enough in relation to the number
of parameters (dimension) there may be degrees of freedom, i.e., directions in the
parameter space, that remain unconstrained by the data. How do we set those
degrees of freedom? This is a part of a broader problem known as regularization.
The question is how to softly constrain the set of functions F to achieve better
generalization.

1



(1) Empirical risk and the least squares criterion

As in the classification setting, we will measure training error in terms of empirical risk

Rn(θ) =
1

n

n∑
t=1

Loss(y(t) − θ · x(t)) (2)

where, for simplicity, we have dropped the parameter θ0. It will be easy to add it later
on in the appropriate place. Note that, unlike in classification, the loss function now de-
pends on the difference between the real valued target value y(t) and the corresponding
linear prediction θ ·x(t). There are many possible ways of defining the loss function. We
will use here a simple squared error: Loss(z) = z2/2. The idea is to permit small discrep-
ancies (we expect the responses to include noise) but heavily penalize large deviations
(that typically indicate poor parameter choices). As a result, we have

Rn(θ) =
1

n

n∑
t=1

Loss(y(t) − θ · x(t)) =
1

n

n∑
t=1

(y(t) − θ · x(t))2/2 (3)

Our learning goal is not to minimize Rn(θ); it is just the best we can do (for now).
Minimizing Rn(θ) is a surrogate criterion since we don’t have a direct access to the test
or generalization error

Rtest
n′ (θ) =

1

n

n+n′∑
t=n+1

(y(t) − θ · x(t))2/2 (4)

Let’s briefly consider how Rn(θ) and Rtest
n′ (θ) are related. If we select θ̂ by minimizing

Rn(θ), our performance will be measured according to Rtest
n′ (θ̂). This test error can

be large for two different reasons. First, we may have a large estimation error. This
means that, even if the true relationship between x and y is linear, it is hard for us to
estimate it on the basis of a small (and potentially noisy) training set Sn. Our estimated
parameters θ̂ will not be entirely correct. The larger the training set is, the smaller the
estimation error will be. The second type of error on the test set is structural error.
This means that we may be estimating a linear mapping from x to y when the true
underlying relationship is highly non-linear. Clearly, we cannot do very well in this
case, regardless of how large the training set is. In order to reduce structural error, we
would have to use a larger set of functions F . But, given a noisy training set Sn, it will
be harder to select the correct function from such larger F , and our estimation error
will increase. Finding the balance between the estimation and structural errors lies at
the heart of learning problems.

When we formulate linear regression problem as a statistical problem, we can talk
about the structural error as “bias”, while the estimation error corresponds to the “vari-
ance” of the estimator θ̂(Sn). The parameters θ̂ are obtained with the help of training
data Sn and thus can be viewed as functions of Sn

2



(2) Optimizing the least squares criterion

Perhaps the simplest way to optimize the least squares objective Rn(θ) is to use the
stochastic gradient descent method discussed earlier in the classification context. Our
case here is easier, in fact, since Rn(θ) is everywhere differentiable. At each step of
the algorithm, we select one training example at random, and nudge parameters in the
opposite direction of the gradient

∇θ(y
(t) − θ · x(t))2/2 = (y(t) − θ · x(t))∇θ(y

(t) − θ · x(t)) = −(y(t) − θ · x(t))x(t) (5)

As a result, the algorithm can be written as

set θ(0) = 0
randomly select t ∈ {1, . . . , n}

θ(k+1) = θ(k) + ηk(y
(t) − θ · x(t))x(t)

(6)

where ηk is the learning rate (e.g., ηk = 1/(k + 1)). Recall that in classification the
update was performed only if we made a mistake. Now the update is proportional
to discrepancy (y(t) − θ · x(t)) so that even small mistakes count, just less. As in the
classification context, the update is “self-correcting”. For example, if our prediction is
lower than the target, i.e., y(t) > θ · x(t), we would move the parameter vector in the
positive direction of x(t) so as to increase the prediction next time x(t) is considered.
This would happen in the absence of updates based on other examples.

Closed form solution

We can also try to minimize Rn(θ) directly by setting the gradient to zero. Indeed,
since Rn(θ) is a convex function of the parameters, the minimum value is obtained at a
point (or a set of points) where the gradient is zero. So, formally, we find θ̂ for which
∇Rn(θ)θ=θ̂ = 0. More specifically,

∇Rn(θ)θ=θ̂ =
1

n

n∑
t=1

∇θ

{
(y(t) − θ · x(t))2/2

}
|θ=θ̂ (7)

=
1

n

n∑
t=1

{
− (y(t) − θ̂ · x(t))x(t)

}
(8)

= − 1

n

n∑
t=1

y(t)x(t) +
1

n

n∑
t=1

(θ̂ · x(t))x(t) (9)

= − 1

n

n∑
t=1

y(t)x(t)︸ ︷︷ ︸
=b

+
1

n

n∑
t=1

x(t)(x(t))T︸ ︷︷ ︸
=A

θ̂ (10)

= −b+ Aθ̂ = 0 (11)

3



where we have used the fact that θ̂ · x(t) is a scalar and can be moved to the right of
vector x(t). We have also subsequently rewritten the inner product as θ̂ · x(t) = (x(t))T θ̂.
As a result, the equation for the parameters can be expressed in terms of a d×1 column
vector b and a d × d matrix A as Aθ = b. When the matrix A is invertible, we can
solve for the parameters directly: θ̂ = A−1b. In order for A to be invertible, the training
points x(1), . . . , x(n) must span Rd. Naturally, this can happen only if n ≥ d, and is
therefore more likely to be the case when the dimension d is small in relation to the size
of the training set n. Another consideration is the cost of actually inverting A. Roughly
speaking, you will need O(d3) operations for this. If d = 10, 000, this can take a while,
making the stochastic gradient updates more attractive.

In solving linear regression problems, the matrix A and vector b are often written
in a slightly different way. Specifically, define X = [x(1), . . . , x(n)]T . In other words, XT

has each training feature vector as a column; X has them stacked as rows. If we also
define ~y = [y(1), . . . , y(n)]T (column vector), then you can easily verify that

b =
1

n
XT~y, A =

1

n
XTX (12)

(3) Regularization

What happens when A is not invertible? In this case the training data provide no
guidance about how to set some of the parameter directions. In other words, the learning
problem is ill-posed. The same issue inflicts the stochastic gradient method as well
though the initialization θ(0) = 0 helps set the parameters to zero for directions outside
the span of the training examples. The simple fix does not solve the broader problem,
however. How should we set the parameters when we have insufficient training data?

We will modify the estimation criterion, the mean squared error, by adding a regu-
larization term. The purpose of this term is to bias the parameters towards a default
answer such as zero. The regularization term will “resist” setting parameters away from
zero, even when the training data may weakly tell us otherwise. This resistance is very
helpful in order to ensure that our predictions generalize well. The intuition is that we
opt for the “simplest answer” when the evidence is absent or weak.

There are many possible regularization terms that fit the above description. In
order to keep the resulting optimization problem easily solvable, we will use ‖θ‖2/2 as
the penalty. Specifically, we will minimize

Jn,λ(θ) =
λ

2
‖θ‖2 +Rn(θ) =

λ

2
‖θ‖2 +

1

n

n∑
t=1

(y(t) − θ · x(t))2/2 (13)

where the regularization parameter λ ≥ 0 quantifies the trade-off between keeping the
parameters small – minimizing the squared norm ‖θ‖2/2 – and fitting to the training
data – minimizing the empirical risk Rn(θ). The use of this modified objective is known
as Ridge regression.

4



While important, the regularization term introduces only small changes to the two
estimation algorithms. For example, in the stochastic gradient descent algorithm, in
each step, we will now move in the reverse direction of the gradient

∇θ

{ λ
2
‖θ‖2 + (y(t) − θ · x(t))2/2

}
|θ=θ(k) = λθ(k) − (y(t) − θ(k) · x(t))x(t) (14)

As a result, the algorithm can be rewritten as

set θ(0) = 0
randomly select t ∈ {1, . . . , n}

θ(k+1) = (1− ληk)θ(k) + ηk(y
(t) − θ · x(t))x(t)

(15)

As you might expect, there’s now a new factor (1−ληk) multiplying the current param-
eters θ(k), shrinking them towards zero during each update.

When solving for the parameters directly, the regularization term only modifies the
d×d matrix A = λI+ (1/n)XTX, where I is the identity matrix. The resulting matrix
is always invertible so long as λ > 0. The cost of inverting it remains the same, however.

The effect of regularization

The regularization term shifts emphasis away from the training data. As a result, we
should expect that larger values of λ will have a negative impact on the training error.
Specifically, let θ̂ = θ̂(λ) denote the parameters that we would find by minimizing the
regularized objective Jn,λ(θ). We view θ̂(λ) here as a function of λ. We claim then

that Rn(θ̂(λ)), i.e., mean squared training error, increases as λ increases. If the training
error increases, where’s the benefit? Larger values of λ actually often lead to lower
generalization error as we are no longer easily swayed by noisy data. Put another way,
it becomes harder to over-fit to the training data. This benefit accrues for a while as λ
increases, then turns to hurt us. Biasing the parameters towards zero too strongly, even
when the data tells us otherwise, will eventually hurt generalization performance. As
a result, you will see a typical U-shaped curve in terms of how the generalization error
depends on the regularization parameter λ.

5


