
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.S064 Introduction to Machine Learning

Phase 1: clustering (lecture 5)

In our previous lectures, we considered supervised learning scenarios, where we have
access to both examples and the corresponding target labels or responses: {(x(i), y(i)), i =
1, . . . , n}. The goal was to learn a mapping from examples to labels that would work
well on (generalize to) yet unseen examples. In contrast, here we have only examples
Sn = {x(i), i = 1, . . . , n}. What is the learning task now? The goal of unsupervised
learning is to uncover useful structure in the data Sn such as identify groups or clusters
of similar examples.

Clustering is one of the key problems in exploratory data analysis. Examples of
clustering applications include mining customer purchase patterns, modeling language
families, or grouping search results according to topics. Clustering can be also used for
data compression. For example, consider vector quantization for image compression.
A typical image consists of 1024*1024 pixels, where each pixel is represented by three
integers ranging from 0 to 255 (8 bits), encoding red, green, and blue intensities of that
point in the image. As a result, we need 24 bits to store each pixel, and the full image
requires about 3MB of storage. One way to compress the image is to select only a few
representative pixels and substitute each pixel with the closest representative. For ex-
ample, if we use only 32 colors (5 bits), then we will need a codebook of 32 representative
pixels (points in the red-green-blue color space). Now, instead of requiring 24bits for
each pixel, we only use 5bits to store the identity of the closest representative pixel in
our codebook. In addition, we need to store the codebook itself which has 32 points in
the color space. Without compressing these further, each of the 32 representative pixels
would require 24 bits to store. Taken together, the compressed image would require
640KB.

A bit more formally, the clustering problem can we written as:

Input: training set Sn = {x(i), i = 1, . . . , n}, where x(i) ∈ Rd, integer k
Output: a set of clusters C1, . . . , Ck.

For example, in the context of the previous example, each cluster is represented by one
pixel (a point in color space). The cluster as a set would then consist of all the points
in the color space that are closest to that representative. This example highlights the
two ways of specify the output of the clustering algorithm. We can either return the
groups (clusters) as sets, or we can return the representatives1 that implicitly specify
the clusters as sets. Which view is more appropriate depends on the clustering problem.
For example, when clustering news, the output can be comprised of groups of articles

1In the clustering literature, the terms ”representative”, ”center” and ”exemplar” are used inter-
changeably.

1

about the same event. Alternatively, we can describe each cluster by its representative.
In the news example, we may want to select a single news story for each event cluster.
In fact, this output format is adopted in Google News.

Note that we have yet to specify any criterion for selecting clusters or the represen-
tatives. To this end, we must be able to compare pairs of points to determine whether
they are indeed similar (should be in the same cluster) or not (should be in a different
cluster). The comparison can be either in terms of similarity such as cosine similarity
or dissimilarity as in Euclidean distance. Cosine similarity is simply the angle between
two vectors (elements):

cos(x(i), x(j)) =
x(i) · x(j)

‖x(i)‖‖x(j)‖
=

∑d
l=1 x

(i)
l x

(j)
l√∑d

l=1 (x
(i)
l)2

√∑d
l=1 (x

(j)
l)2

(1)

Alternatively, we can focus on dissimilarity as in pairwise distance. In this lecture, we
will primarily use squared Euclidian distance

dist(x(i), x(j)) = ‖x(i) − x(j)‖2 =
d∑

l=1

(x
(i)
l − x

(j)
l)2 (2)

but there are many alternatives. For example, in your homework (and in the literature)
you may often encounter l1 distance

dist(x(i), x(j)) = ‖x(i) − x(j)‖1 =
d∑

l=1

|x(i)
l − x

(j)
l | (3)

The choice of which distance metric to use is important as it will determine the type of
clusters you will find. A reasonable metric or similarity is often easy to find based on the
application. Another issue with the metric is that the available clustering algorithms
such as k-means discussed below may rely on a particular metric.

Once we have the distance metric, we can specify an objective function for clustering.
In other words, we specify the cost of choosing any particular set of clusters or their
representatives (a.k.a. centroids). The “optimal” clustering is then obtained by mini-
mizing this cost. The cost is often cast in terms of distortion associated with individual
clusters. For instance, the cost – distortion – associated with cluster C could be the
sum of pairwise distances within the points in C, or the diameter of the cluster (largest
pairwise distance). We will define the distortion here slightly differently: the sum of
(squared) distances from each point in the cluster to the corresponding cluster repre-
sentative z. For cluster C with centroid z, the distortion is defined as

∑
i∈C ‖x(i) − z‖2.

The cost of clustering C1, C2, . . . , Ck, is simply the sum of costs of individual clusters:

cost(C1, C2, . . . , Ck, z
(1), . . . , z(k)) =

∑
j=1...k

∑
i∈Cj

‖x(i) − z(j)‖2 (4)

2

Our goal is to find a clustering that minimizes this cost. Note that the cost here depends
on both the clusters and how the representatives (centroids) are chosen for each cluster.
It seems unnecessary to have to specify both clusters and centroids and, indeed, one
will imply the other. We will see this below. Note also that we only consider valid
clusterings C1, . . . , Ck, those that specify a partition of the indexes {1, . . . , n}. In other
words, each point must belong to one and only one cluster.

1 K-means

We introduced two ways to characterize the output of a clustering algorithm: the cluster
itself or the corresponding representative (centroid). For some cost functions these two
representations are interchangeable: knowing the representatives, we can compute the
corresponding clusters and vice versa. In fact, this statement holds for the cost function
introduced above. We can define clusters by their representatives:

Cj = {i ∈ {1, . . . , n} s.t. the closest representative of x(i) is z(j)} (5)

These clusters define an optimal clustering with respect to our cost function for a fixed
setting of the representatives z(1), . . . , z(k). In other words,

cost(z(1), . . . , z(k)) = min
C1,...,Ck

cost(C1, C2, . . . , Ck, z
(1), . . . , z(k)) (6)

= min
C1,...,Ck

∑
j=1...k

∑
i∈Cj

‖x(i) − z(j)‖2 (7)

=
∑

i=1,...,n

min
j=1,...,k

‖x(i) − z(j)‖2 (8)

where in the last expression we are simply assigning each point to its closest repre-
sentative (as we should). Geometrically, the partition induced by the centroids can be
visualized as as Voronoi partition of Rd, where Rd is divided into k convex cells. The cell
is the region of space where the corresponding centroid z is the closest representative.
See Figure 1.

The K-means algorithm

Now, given an optimization criterion, we need to find an algorithm that tries to minimize
it. Directly enumerating and selecting the best clustering out of all the possible clus-
terings is prohibitively expensive. We will instead rely here on an approximate method
known as the k-means algorithm. This algorithm alternatingly finds best clusters for
centroids, and best centroids for clusters. The iterative algorithm is given by

1. Initialize centroids z(1), . . . , z(k)

3

Figure 1: An example of Voronoi diagram

2. Repeat until there is no further change in cost

(a) for each j=1,. . . ,k: Cj = {i s.t. x(i) is closest to z(j)}
(b) for each j=1,. . . ,k: z(j) = 1

|Cj |
∑

i∈Cj
x(i) (cluster mean)

Each iteration requires O(kn) operations.

Convergence The k-means algorithm does converge albeit not necessarily to a solu-
tion that is optimal with respect to the cost defined above. However, each iteration of
the algorithm necessarily lowers the cost. Given that the algorithm alternates between
choosing clusters and centroids, it will be helpful to look at

cost(C1, C2, . . . , Ck, z
(1), . . . , z(k)) (9)

as the objective function for the algorithm. Consider (C1, C2, . . . , Ck, z
(1), . . . , z(k)) as

the starting point. In the first step of the algorithm, we find new clusters C ′
1, C

′
2, . . . , C

′
k

corresponding to fixed centroids z(1), . . . , z(k). These new clusters are chosen such that

cost(C1, C2, . . . , Ck, z
(1), . . . , z(k))

(a)

≥ min
C1,...,Ck

cost(C1, C2, . . . , Ck, z
(1), . . . , z(k)) (10)

= cost(C ′
1, C

′
2, . . . , C

′
k, z

(1), . . . , z(k)) (11)

This is because C ′
1, C

′
2, . . . , C

′
k are clusters induced from assigning each point to its closest

centroid. No other clusters can achieve lower cost for these centroids. The inequality
(a) is equality only when the algorithm converges. In the 2nd step of the algorithm, we

fix the new clusters C ′
1, C

′
2, . . . , C

′
k and find new centroids z′(1), . . . , z′(k) such that

cost(C ′
1, C

′
2, . . . , C

′
k, z

(1), . . . , z(k))
(b)

≥ min
z(1),...,z(2)

cost(C ′
1, C

′
2, . . . , C

′
k, z

(1), . . . , z(k))(12)

= cost(C ′
1, C

′
2, . . . , C

′
k, z

′(1), . . . , z′
(k)

) (13)

4

where the inequality in (b) is tight only when the centroids are already optimal for the
given clusters, i.e., when the algorithm has converged. The problem of finding the new
centroids decomposes across clusters. In other words, we can find them separately for
each cluster. In particular, the new centroid z′(j) for a fixed cluster C ′

j is found by
minimizing ∑

i∈C′
j

‖x(i) − z(j)‖2 (14)

with respect to z(j). The solution to this is the mean of the points in the cluster

z′
(j)

=
1

|C ′
j|
∑
i∈C′

j

x(i) (15)

as specified in the k-means algorithm. We will explore this point further in a homework
problem.

Now, taken together, (a) and (b) guarantee that the k-means algorithm monotoni-
cally decreases the objective function. As the cost has a lower bound (non-negative), the
algorithm must converge. Moreover, after the first step of each iteration, the resulting
cost is exactly Eq.(8), and it too will decrease monotonically.

5

	K-means

