
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.S064 Introduction to Machine Learning

Phase 2: classification (lecture 7)

Linear classifiers and regularization

We have so far discussed linear classifiers over examples x ∈ Rd. These classifiers can
be written in the form

h(x; θ, θ0) = sign
(
θ · x+ θ0

)
(1)

with parameters θ ∈ Rd and θ0 ∈ R. Given a training set of labeled examples, Sn =
{(x(t), y(t)), t = 1, . . . , n}, we can estimate the classifier parameters by minimizing the
empirical risk

Rn(θ, θ0) =
1

n

n∑
t=1

Loss
(
y(t)(θ · x(t) + θ0)

)
(2)

The loss function could be the zero-one loss Loss0/1(z) = [[z ≤ 0]] (resulting in classi-
fication error) or the hinge loss Lossh(z) = max{1 − z, 0} (which we adopt here). One
problem with this setup is that there are potentially many classifiers, i.e., many values
for θ, θ0, that result in the same empirical risk. For example, when the training examples
are linearly separable, there are many classifiers that attain zero empirical risk. Which
one of these should we choose?

The empirical risk does not sufficiently constrain the parameters. We ran into a
similar (ill-posed) situation in the context of linear regression. We could remedy the
problem here in the same way, i.e., by adding a regularization term that biases the
parameters towards a default answer such as the all-zero parameters. In this case, we
would find parameters that minimize

λ

2
‖θ‖2 +

1

n

n∑
t=1

Lossh
(
y(t)(θ · x(t) + θ0)

)
(3)

instead of the empirical risk alone. The regularization parameter λ > 0 balances the
two terms, how much we favor zero parameters at the expense of the empirical risk.
Note that the regularization term only applies to θ, not θ0. The reason for this is that
while θ specifies the orientation of the decision boundary, and how quickly the linear
function θ ·x+ θ0 changes off the boundary, θ0 is used to specify how far from the origin
the boundary is located. Without prior information about where the points are, placing
constraints on the location of the boundary may not be useful. The classification method
that uses the regularized objective Eq.(3) is known as the support vector machine (there
are many versions, this one in a primal form). We will develop here a general, geometric
approach to such classifiers.

1

Maximum margin separators

Let’s begin by assuming that the training examples are linearly separable. Clearly, in this
case there are many linear separators that all perfectly classify the training examples.
For example, if we run the perceptron algorithm with two different initializations, or
cycle through the training examples in a slightly different order, we would potentially
arrive at a different classifier (linear separator). Here we are trying to explicitly find a
single linear separator that is “optimal” in some sense.

If we imagine that (yet unseen) test examples are noisy versions of the training
examples, then it would seem sensible to draw the linear decision boundary in a manner
that a) classifies all the training examples correctly, and b) is maximally removed from
all the training examples. This is known as the maximum margin separator or the
optimal hyperplane.

Suppose (θ, θ0) are parameters of a linear classifier that is correct on all the training
examples, i.e., y(t)(θ · x(t) + θ0) > 0, t = 1, . . . , n. In this case, we can measure the
distance of each training point to the decision boundary by

γt(θ, θ0) =
y(t)(θ · x(t) + θ0)

‖θ‖ (4)

To see this, note that θ · x+ θ0 is a linear function of x that increases at rate ‖θ‖ as we
move x off the decision boundary θ · x+ θ0 = 0 (towards the positive, θ direction). So,
to get the distance traveled orthogonally to the boundary, we simply divide θ · x + θ0
by ‖θ‖. Note that γt(θ, θ0) is (clearly) a function of the parameters as well as the point
itself. Now, to find the maximum margin separator, we should search for parameters
(θ, θ0) that maximize

min
t=1,...,n

γt(θ, θ0) (5)

In other words, we are trying to maximize the minimum distance to the boundary. While
this looks like a challenging problem to optimize, it can be formulated more simply as
a quadratic program (quadratic objective, linear constraints)

(primal) min
1

2
‖θ‖2 subject to y(t)(θ · x(t) + θ0) ≥ 1, t = 1, . . . , n (6)

Note that the classification constraints y(t)(θ · x(t) + θ0) ≥ 1 ensure that we consider
only θ, θ0 for which all the training examples are correctly classified. The choice of 1
on the right hand side is arbitrary (any positive number would do). Subject to these
constraints, we minimize the norm ‖θ‖.

Let’s understand this quadratic programming problem geometrically. Figure 1a)
shows a “valid” setting of θ, θ0. In addition to the decision boundary θ · x + θ0 = 0,
we have drawn the associated margin boundaries, θ · x + θ0 = 1 and θ · x + θ0 = −1.
In order for θ, θ0 to satisfy the classification constraints, all the training examples must

2

appear on or outside the two margin boundaries. For example, all the positive training
examples must be on the side of the margin boundary θ · x + θ0 = 1 that θ points to.
As displayed, the two margin boundaries are parallel to the decision boundary. If they
were not, they would have to cross at some point, and thus have a point x in common.
But there’s no x for which θ ·x+ θ0 = 1 and θ ·x+ θ0 = 0 can hold at the same time. In
addition, the two margin boundaries lie exactly 1/‖θ‖ away from the decision boundary,
on the opposite sides. To see this, let x(0) be a point that is exactly on the decision
boundary, i.e., θ · x(0) + θ0 = 0, and let u = θ/‖θ‖ be a unit vector in the direction of θ.
If we move from x(0) exactly length 1/‖θ‖ in the direction of u, we get

θ · (x(0) + u/‖θ‖) + θ0 = θ · x(0) + θ · u/‖θ‖+ θ0 = θ · x(0) + θ0︸ ︷︷ ︸
=0

+ θ · θ/‖θ‖2︸ ︷︷ ︸
=1

= 1 (7)

Since the margin boundaries are 1/‖θ‖ away from the decision boundary, by minimizing
‖θ‖, we push the margin boundaries apart. At some point, they cannot be pushed
further without violating the classification constraints. At this point, the boundary
“locks” into the unique maximum margin solution. This is shown in Figure 1b). Some
of the points will necessarily lie exactly on the margin boundaries. They are called
support vectors (circled in the figure).

a)

+

-
-
-

+

+

✓ · x + ✓0 = 0

✓ · x + ✓0 = 1

✓ · x + ✓0 = �1

1/k✓k

b)

+

-
-
-

+

+ ✓ · x + ✓0 = 0

✓ · x + ✓0 = 1

✓ · x + ✓0 = �1

1/k✓k

Figure 1: a) a linear separator with margin boundaries that satisfy the classification
constraints. b) the maximum margin separator

In many cases the dimension d of the parameters (and examples) is quite large.
This makes the quadratic programming problem expressed in Eq.(6) a bit challenging
to solve. We can, however, solve its dual problem. This change from primal to dual form
highlights two ways of representing the parameters θ: directly in terms of coordinates
as in the vector θ (primal) or in terms of examples θ =

∑n
t=1 αty

(t)x(t) (dual). We have

3

already seen the “dual form” in the context of the perceptron algorithm. Specifically,
we could write the parameters after k updates as

θ(k) =
n∑

t=1

α
(k)
t y(t)x(t) (8)

where α
(k)
t ≥ 0 specifies the number of times we had made a mistake on (x(t), y(t)).

Each mistake resulted in adding exactly y(t)x(t) to the parameter vector, and the above
expression simply adds those updates together. In the context of maximum margin
separators, we can also write θ =

∑n
t=1 αty

(t)x(t), where αt ≥ 0. However, in this case,
αt are no longer integer valued. Instead, as real numbers, they smoothly change how
much we rely on a particular training example. Note that since the maximum margin
solution appears to depend only on a few points – the support vectors – most of the αt

coefficients will be exactly zero (as if the corresponding point was not included in the
training set). The larger the value αt is, the harder it was to satisfy the associated clas-
sification constraint. Recall from the perceptron analysis that adding y(t)x(t) increases
the agreement, thus getting us closer to satisfying the specific classification constraint.

The non-negative coefficients α1, . . . , αn are actually so called Lagrange multipliers
associated with the classification constraints. Let’s derive this a bit more formally. For
simplicity, we drop the bias parameter θ0, and try to find the dual problem for

(primal) min
1

2
‖θ‖2 subject to y(t)(θ · x(t)) ≥ 1, t = 1, . . . , n (9)

As the first step, we construct so called Lagrangian. This is an unconstrained minimiza-
tion problem

L(θ, α) =
1

2
‖θ‖2 +

n∑
t=1

αt[1− y(t)(θ · x(t))] (10)

where we have introduced non-negative coefficients α1, . . . , αn (Lagrange multipliers)
that serve to enforce the classification constraints. They behave like adversaries. Our
goal is to minimize L(θ, α) while the adversaries (the α’s) are trying to maximize it. If
for a given choice of θ, we have [1 − y(t)(θ · x(t))] > 0, i.e., the classification constraint
is violated, then the adversary can choose a large value for αt and increase L(θ, α)
arbitrarily, effectively prohibiting us from choosing θ values that violate the constraint.
If, on the other hand, the constraint is satisfied for our choice of θ, the best the adversary
can do is to set αt = 0. If we now solve θ as a function of α′s, we get

∂

∂θ
L(θ, α) = θ −

n∑
t=1

αty
(t)x(t) = 0 (11)

4

Thus, indeed, θ has the form discussed above. Plugging this θ back into the Lagrangian,
we obtain the dual problem

(dual) max
n∑

t=1

αt −
1

2

n∑
t=1

n∑
t′=1

αtαt′y
(t)y(t

′)(x(t) · x(t′)) (12)

subject to αt ≥ 0, t = 1, . . . , n (13)

which is again a quadratic program but with simpler “box” constraints. By maximizing
this dual objective we find the setting of αt’s – the adversaries – that ensure that the
resulting θ̂ =

∑n
t=1 α̂ty

(t)x(t) satisfies the classification constraints. The solution satisfies
the following complementary slackness constraints:

α̂t > 0 : y(t)
(n∑

t′=1

α̂t′y
(t′)x(t

′)

)
· x(t) = 1 (support vector) (14)

α̂t = 0 : y(t)
(n∑

t′=1

α̂t′y
(t′)x(t

′)

)
· x(t) ≥ 1 (non-support vector) (15)

The classification constraints are satisfied with equality for support vectors as these
points lie exactly on the margin boundaries. α̂t = 0 for all the points that are beyond
the margin boundaries.

The main reason for consider the dual problem is that now the optimization problem
we have to solve depends on the examples only via their inner products, i.e., via (x(t) ·
x(t

′)). If someone gave us these without the examples, we could still solve the learning
problem. It turns out that in many cases the inner products can be evaluated efficiently
even for very high dimensional vectors even though they couldn’t be used as is in the
primal problem. We will discuss such inner products or kernels later on.

Sparsity and generalization

The fact that the resulting α’s are sparse, i.e., most of them are exactly zero, may help
generalization. Consider, for example, leave-one-out cross-validation error as a surrogate
measure for how well the maximum margin classifier might generalize:

LOOCV ≤ # of support vectors

n
(16)

In other words, the fewer support vectors we get, potentially the better we generalize.
This bound is easy to understand from figure 1b). If we hold out one point from the
training set, and this point is not a support vector, then our solution doesn’t change. It
was classified correctly when included, and will continue to be classified correctly when
excluded from the training set (as the solution remains the same). We can only obtain
an error if we hold out a support vector (but not necessarily even then). The above
bound is conservative in this sense.

5

