
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.S064 Introduction to Machine Learning

Phase 2: classification (lecture 8)

Support vector machines (with offset)

As we had discussed before, maximum margin linear separators can be found by solving
the following primal quadratic programming problem

(primal) min
1

2
‖θ‖2 subject to y(t)(θ · x(t) + θ0) ≥ 1, t = 1, . . . , n (1)

If we wish to solve the problem in the dual, i.e., represent the parameters θ in terms of
examples as θ =

∑n
t=1 αty

(t)x(t), we can solve the dual

(dual) max
n∑
t=1

αt −
1

2

n∑
t=1

n∑
t′=1

αtαt′y
(t)y(t

′)(x(t) · x(t′)) (2)

subject to αt ≥ 0,
n∑
t=1

αty
(t) = 0 (3)

where the additional constraint
∑n

t=1 αty
(t) = 0 pertains to including the offset param-

eter θ0 in the primal. But θ0 does not appear anywhere in the dual. How do we set it?
After we solve the dual, we can see that α̂t > 0 for some examples (support vectors)
and α̂t = 0 for others (non-support vectors). Since for support vectors, the classification
constraints must be satisfied with equality, we have that when α̂ > 0,

y(t)
(
θ̂ · x(t) + θ̂0

)
= y(t)

(n∑
t′=1

α̂t′y
(t′)(x(t

′) · x(t)) + θ̂0
)

= 1 (4)

As y(t) ∈ {−1, 1} or (y(t))2 = 1 we can multiply both sides by y(t) and get

θ̂0 = y(t) −
(n∑
t′=1

α̂t′y
(t′)(x(t

′) · x(t))) (5)

This should hold for all support vectors. However, solving the dual quadratic program-
ming problem numerically does introduce errors and relying on any particular constraint
may be unwise. Instead, we can simply take the median of all θ̂0 estimates from support
vector constraints.

1

Support vector machines (with errors)

If the labels for training examples contain errors, finding the maximum margin linear
classifier may be problematic. The resulting decision boundary is potentially drastically
affected by a single mislabeled point. Consider, for example, how the decision boundary
changes by the single positive (perhaps mislabeled) point included in Figure 1b).

a)

+

-

-

-

+

+ ✓ · x + ✓0 = 0

✓ · x + ✓0 = 1

✓ · x + ✓0 = �1

-
- -

-

-
--
-

+

+

+

+
+
+

++

a)

+

-

-

-

+

+
✓ · x + ✓0 = 0

✓ · x + ✓0 = 1

✓ · x + ✓0 = �1

-
- -

-

-
--
-

+

+

+

+
+
+

++

+

Figure 1: The maximum margin separator is strongly affected by individual points

In order to remedy the situation, we should allow for misclassified points, yet maxi-
mize the margin. How do we achieve this? The simplest way is to treat the classification
constraints as “soft” constraints rather than hard constraints. In other words, we permit
them to be violated but specify the cost of such discrepancies in relation to increasing
the margin (decreasing the norm ‖θ‖). Specifically, we will add “slack” variables ξt ≥ 0
to the primal optimization problem as follows

(primal) min
λ

2
‖θ‖2 +

1

n

n∑
t=1

ξt (6)

subject to y(t)(θ · x(t) + θ0) ≥ 1− ξt, ξt ≥ 0, t = 1, . . . , n (7)

We now minimize with respect to the parameters θ, θ0 as well as the slack variables
ξt ≥ 0. Note that we had to introduce a parameter1 λ (regularization parameter)
to balance how much we favor increasing the margin over satisfying the classification
constraints. Larger values of λ will push the margin boundaries and potentially the
decision boundary past the examples. The margin boundaries are still defined as points
satisfying θ · x + θ0 = 1 or θ · x + θ0 = −1. Figure 2 illustrates the choice of λ and the
resulting maximum margin solutions when the examples are still linearly separable.

1In the literature you will often see a parameter C multiplying the sum of slack variables instead.
This is the same formulation so long as C = 1/λ.

2

a) ✓ · x + ✓0 = 0

� = 1 (C = 1)

✓ · x + ✓0 = 1 ✓ · x + ✓0 = �1

✓

a) ✓ · x + ✓0 = 0

✓ · x + ✓0 = 1 ✓ · x + ✓0 = �1

� = 100 (C = 0.01)

✓

Figure 2: The effect of slack when examples are still linearly separable

The other advantage of the slack variables is that we can now solve problems that
are no longer linearly separable. This is illustrated in Figure 2 with different values of
the regularization parameter λ.

a)

� = 0.1 (C = 10)

✓ · x + ✓0 = 1 ✓ · x + ✓0 = �1

✓ · x + ✓0 = 0

✓

a)

� = 100 (C = 0.01)

✓ · x + ✓0 = 1 ✓ · x + ✓0 = �1

✓ · x + ✓0 = 0

✓

Figure 3: The effect of slack when examples are no longer linearly separable

Our current formulation of the support vector machines can be written in a familiar
form. Indeed, the primal version is exactly the same as minimizing

λ

2
‖θ‖2 +

1

n

n∑
t=1

Lossh
(
y(t)(θ · x(t) + θ0)

)
(8)

with respect to θ and θ0. Here Lossh(z) = max{1− z, 0} is the hinge loss. To see that

3

these are equivalent, let us define

ξt = Lossh
(
y(t)(θ · x(t) + θ0)

)
= max{1− y(t)(θ · x(t) + θ0), 0} (9)

Clearly, ξt ≥ 0 and

ξt ≥ 1− y(t)(θ · x(t) + θ0) or y(t)(θ · x(t) + θ0) ≥ 1− ξt (10)

In other words, the slack variables are simply encoding the hinge loss in the primal
formulation.

How will the dual formulation change in light of the slack variables in the primal? We
will simply limit how large the Lagrange multipliers αt can become. In other words, the
adversary “gives up” on trying to further satisfy some of the classification constraints.
More formally,

(dual) max
n∑
t=1

αt −
1

2

n∑
t=1

n∑
t′=1

αtαt′y
(t)y(t

′)(x(t) · x(t′)) (11)

subject to 0 ≤ αt ≤ 1/λ,
n∑
t=1

αty
(t) = 0 (12)

Note that the larger the value of λ is, i.e., the more we wish to increase the margin at
the expense of the constraints, the smaller the resulting αt must be.

We have to be a bit more careful now in reconstructing the offset parameter θ0. Not
all the support vectors, i.e., points with non-zero α’s, will lie exactly on the margin
boundaries. Indeed, there will be points that lie on the wrong side of the margin
boundaries or points that are misclassified altogether. The complementary slackness
constraints that characterize the dual solution are now given by

α̂t = 0 ⇒ y(t)
(n∑
t′=1

α̂t′y
(t′)(x(t

′) · x(t)) + θ̂0
)
≥ 1 (non-support vectors) (13)

α̂t ∈ (0, 1/λ) ⇒ y(t)
(n∑
t′=1

α̂t′y
(t′)(x(t

′) · x(t)) + θ̂0
)

= 1 (SVs, on the margin) (14)

α̂t = 1/λ ⇒ y(t)
(n∑
t′=1

α̂t′y
(t′)(x(t

′) · x(t)) + θ̂0
)
≤ 1 (SVs, margin violations)(15)

We can use the points for which αt lies in the interior of the possible values, i.e., αt ∈
(0, 1/λ), to reconstruct θ̂0.

Non-linear support vector machines – kernels

Let’s start by considering how we can use linear classifiers to make non-linear predic-
tions. The easiest way is to first map all the examples x ∈ Rd into a different feature

4

representation φ(x) ∈ Rp where typically p is much larger than d. We would then sim-
ply use a linear classifier on the new (higher dimensional) feature vectors, pretending
that they were the original input vectors. There are many ways to create such feature
vectors. For example, we can build φ(x) by concatenating polynomial terms of the orig-
inal coordinates. For example, in two dimensions, we could map x = [x1, x2]

T to a five
dimensional feature vector

φ(x) = [x1, x2,
√

2x1x2, x
2
1, x

2
2]
T (16)

We can then train a “linear” classifier (linear in the new φ-coordinates)

y = sign(θ · φ(x) + θ0) (17)

by mapping each training example to the corresponding feature vector. In other words,
our training set is now Sφn = {(φ(x(t)), y(t)), t = 1, . . . , n}. The resulting parameter
estimates θ̂, θ̂0 define a linear decision boundary in the φ-coordinates but a non-linear
boundary in the original x-coordinates

θ̂ · φ(x) + θ̂0 = 0 ⇔ θ̂1x1 + θ̂2x2 + θ̂3
√

2x1x2 + θ̂4x
2
1 + θ̂5x

2
2 + θ̂0 = 0 (18)

The non-linear boundary can represent, e.g., an ellipse in the original two dimensional
space.

The main problem with the above procedure is that the feature vectors φ(x) can
become quite high dimensional. For example, if we start with x ∈ Rd, where d = 1000,
then compiling φ(x) by concatenating polynomial terms up to the 2nd order would have
dimension d+d(d+1)/2 or about 500, 000. Using higher order polynomial terms in such
situations becomes quickly infeasible. However, it may still be possible to implicitly use
such feature vectors. If training and prediction problems can be formulated only in terms
of inner products between examples, then the relevant computation for us is φ(x) ·φ(x′).
Depending on how we define φ(x), this computation can be carried out efficiently even
if using φ(x) explicitly is not. For example, when φ(x) = [x1, x2,

√
2x1x2, x

2
1, x

2
2]
T , we

see that (check!)

φ(x) · φ(x′) = (x · x′) + (x · x′)2 (19)

So the inner product is obtained easily from the original input vectors.
One of the main advantages from considering the dual form of support vector ma-

chines is that it can be expressed entirely in terms of inner products. For example, in
solving for the Lagrange multipliers α̂t, the dual problem in Eq.(11) only requires us
to evaluate inner products between the training examples, i.e., (x(t) · x(t′)). Similarly,
the parameter θ̂0 can be reconstructed from the margin constraints in Eq.(14) based on
inner products. Finally, we can predict labels for new examples x with access only to
the inner products between the training examples x(t) and the new points:

y = sign
(
θ̂ · x+ θ̂0

)
= sign

(
n∑
t=1

α̂ty
(t)(x(t) · x) + θ̂0

)
(20)

5

When we map examples into feature vectors, we replace (x(t) ·x(t′)) with φ(x(t)) ·φ(x(t
′)).

Instead of explicitly using feature vectors, we will focus on evaluating kernel functions
K(x(t), x(t

′)) = φ(x(t)) · φ(x(t
′)).

6

