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Phase 2: classification (lecture 9)

Kernel methods

We have discussed several linear prediction methods, including the perceptron algorithm,
support vector machines, and linear (Ridge) regression. All of these methods can be
transformed into non-linear methods simply by mapping examples x ∈ Rd into feature
vectors φ(x) ∈ Rp. Typically p > d and φ(x) is constructed from x by appending
polynomial (or other non-linear) terms involving the coordinates of x such as xixj, x

2
i ,

and so on. The resulting predictors

Perceptron : y = sign
(
θ · φ(x) + θ0) (1)

SVM : y = sign
(
θ · φ(x) + θ0) (2)

Linear regression : y = θ · φ(x) + θ0 (3)

differ from each other based on how they are trained in response to (expanded) training
examples Sn = {(φ(x(t)), y(t)), t = 1, . . . , n}. In other words, the estimated parameters θ̂
and θ̂0 will be different in the three cases even if they were all trained based on the same
data. Note that, in the regression case, the responses y(t) are typically not binary labels.
However, there’s no problem applying the linear regression method even if the training
labels are all ±1. The only issue is the mismatch between what the model/method
assumes (real valued responses) and what the data look like (e.g., binary labels).

The problem with explicitly mapping examples to feature vectors φ(x) is that they
tend to be high dimensional, making it difficult to estimate and use the corresponding
prediction methods. However, we have already seen how support vector machines can
be cast entirely in terms of inner products or kernels K(x, x′) = φ(x) ·φ(x′). These inner
products can be sometimes evaluated substantially more efficiently than the associated
feature vectors φ(x). In fact, we often focus precisely on kernels that can be evaluated
efficiently. In such cases, we can implicitly work with very high (or even infinite) di-
mensional feature vectors. For example, the feature vectors that specify the radial basis
kernel

K(x, x′) = φ(x) · φ(x′) = exp(−‖x− x′‖2/2) (4)

are indeed infinite dimensional (see below). It is quite easy to specify powerful classifiers
or regression methods via kernels. The only requirement is that the prediction method
can be cast entirely in terms of inner products.

We begin by developing kernel versions of the perceptron and linear regression meth-
ods, and subsequently discuss ways of constructing kernels directly instead of building
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feature vectors. All the kernels we consider can be readily used as part of any of the
three methods.

Kernel perceptron

We can run the perceptron algorithm (until convergence) when the training examples
are linearly separable in the given feature representation. Recall that the algorithm is
given by

(0) Initialize: θ = 0 (vector), θ0 = 0

(1) Cycle through the training examples t = 1, . . . , n

If y(t)(θ · φ(x(t)) + θ0) ≤ 0 (mistake)

then θ ← θ + y(t)φ(x(t)) and θ0 ← θ0 + y(t)

It is clear from this description that the parameters θ and θ0 at any point in the algorithm
can be written as

θ =
n∑
i=1

αiy
(i)φ(x(i)) (5)

θ0 =
n∑
i=1

αiy
(i) (6)

where αi is the number of times that we have made a mistake on the corresponding
training example (φ(x(i)), y(i)). Our goal here is to rewrite the algorithm so that we just
update αi’s, never explicitly constructing θ which may be high dimensional. To this
end, note that

θ · φ(x) =
n∑
i=1

αiy
(i)(φ(x(i)) · φ(x)) =

n∑
i=1

αiy
(i)K(x(i), x) (7)

So, the discriminant function θ · φ(x) + θ0 can be written solely in terms of the kernel
function and α’s

θ · φ(x) + θ0 =
n∑
i=1

αiy
(i)K(x(i), x) +

n∑
i=1

αiy
(i) =

n∑
i=1

αiy
(i)[K(x(i), x) + 1] (8)

This is all that we need for prediction or for assessing whether there was a mistake on a
particular training example (φ(x(t)), y(t)). We can therefore write the algorithm just in
terms of α’s, updating them in response to each mistake. The resulting kernel perceptron
algorithm is given by

Initialize: αt = 0, t = 1, . . . , n
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Cycle through training examples t = 1, . . . , n

If y(t)(
∑n

i=1 αiy
(i)[K(x(i), x(t)) + 1]) ≤ 0 (mistake)

then αt ← αt + 1

Note that the algorithm can be run with any valid kernel function K(x, x′). Also,
typically only a few of the counts αi will be non-zero. This means that only a few of the
training examples are relevant for finding a separating solution, the rest of the counts
αi remain exactly at zero. So, just as with support vector machines, the solution can
be quite sparse. Figure 1 below shows the decision boundary

n∑
i=1

αiy
(i)[K(x(i), x) + 1] = 0 (9)

resulting from running the kernel perceptron algorithm with the radial basis kernel (see
later for why this is a valid kernel)

K(x, x′) = exp(−‖x− x′‖2/2) (10)

The algorithm makes only four mistakes until a separating solution is found!
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Figure 1: Kernel perceptron example. We have circled the four training examples that
the algorithm makes a mistake on.

Kernel linear regression

For simplicity, let’s consider here the case where θ0 = 0, i.e., that the regression function
we wish to estimate is given by θ · φ(x). With this change, the estimation criterion for

3



parameters θ was given by

J(θ) =
1

n

n∑
t=1

(y(t) − θ · φ(x(t)))2/2 +
λ

2
‖θ‖2 (11)

This is a convex function (bowl-shaped) and thus the minimum is obtained at the point
where the gradient is zero. To this end,

∂

∂θ
J(θ) = − 1

n

n∑
t=1

(y(t) − θ · φ(x(t)))︸ ︷︷ ︸
=nλαt

φ(x(t)) + λθ (12)

= −λ
n∑
t=1

αtφ(x(t)) + λθ = 0 (13)

or, equivalently, that θ =
∑n

t=1 αtφ(x(t)), where αt are proportional to prediction errors
(recall that α’s were related to errors also in SVM and perceptron algorithms). The
above equation holds only if αt and θ relate to each other in a specific way, i.e., only if

nλαt = y(t) − θ · φ(x(t)) (14)

= y(t) −

(
n∑
i=1

αiφ(x(i))

)
· φ(x(t)) (15)

= y(t) −
n∑
i=1

αiK(x(i), x(t)) (16)

which should hold for all t = 1, . . . , n. Let’s write the equation in a vector form.
~α = [α1, . . . , αn]T , ~y = [y(1), . . . , y(n)]T , and because K(x(i), x(t)) = K(x(t), x(i)),

n∑
i=1

αiK(x(i), x(t)) =
n∑
i=1

K(x(t), x(i))αi = [K~α]t (17)

where K is a n× n matrix whose i, j element is K(x(i), x(j)) (a.k.a. the Gram matrix).
Now, in a vector form, we have

nλ ~α = ~y −K~α or (nλ I +K)~α = ~y (18)

The solution is simply ~α = (nλ I +K)−1~y (always invertible for λ > 0). In other words,
estimated coefficients α̂t can be computed only in terms of the kernel function and the
target responses, never needing to explicitly construct feature vectors φ(x). Once we
have the coefficients, prediction for a new point x is similarly easy

θ̂ · φ(x) =
n∑
i=1

α̂iφ(x(i)) · φ(x) =
n∑
i=1

α̂iK(x(i), x) (19)
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Figure 2 below shows examples of one dimensional regression problems with higher order
polynomial kernels. Which of these kernels should we use? (the right answer is linear;
this is how the data was generated, with noise). The general problem selecting the
kernel (or the corresponding feature representation) is a model selection problem. We
can always try to use cross-validation as a model selection criterion.
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Figure 2: Kernel regression with a linear kernel (top left), 3rd order polynomial kernel
(top right), 5th order polynomial kernel (bottow left), and a 7th order polynomial kernel
(bottom right).

Kernel functions

All of the methods discussed above can be run with any valid kernel function K(x, x′).
A kernel function is valid if and only if there exists some feature mapping φ(x) such that
K(x, x′) = φ(x) ·φ(x′). We don’t need to know what φ(x) is (necessarily), only that one
exists. We can build many common kernel functions based only on the following four
rules
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(1) K(x, x′) = 1 is a kernel function.

(2) Let f : Rd → R be any real valued function of x. Then, if K(x, x′) is a kernel
function, then so is K̃(x, x′) = f(x)K(x, x′)f(x′)

(3) IfK1(x, x
′) andK2(x, x

′) are kernels, then so is their sum. In other words, K(x, x′) =
K1(x, x

′) +K2(x, x
′) is a kernel.

(4) IfK1(x, x
′) andK2(x, x

′) are kernels, then so is their productK(x, x′) = K1(x, x
′)K2(x, x

′)

To understand these composition rules, let’s figure out how they relate to the underlying
feature mappings. For example, a constant kernel K(x, x′) = 1 simply corresponds to
φ(x) = 1 for all x ∈ Rd. Similarly, if φ(x) is the feature mapping for kernel K(x, x′), then
K̃(x, x′) = f(x)K(x, x′)f(x′) (rule 2) corresponds to φ̃(x) = f(x)φ(x). Adding kernels
means appending feature vectors. For example, let’s say that K1(x, x

′) and K2(x, x
′)

correspond to feature mappings φ(1)(x) and φ(2)(x), respectively. Then (see rule 3)

K(x, x′) =

[
φ(1)(x)
φ(2)(x)

]
·
[
φ(1)(x)
φ(2)(x)

]
(20)

= φ(1)(x) · φ(1)(x′) + φ(2)(x) · φ(2)(x′) (21)

= K1(x, x
′) +K2(x, x

′) (22)

Can you figure out what the feature mapping is for K(x, x′) in rule 4, expressed in terms
of the feature mappings for K1(x, x

′) and K2(x, x
′)?

Many typical kernels can be constructed on the basis of these rules. For example,
K(x, x′) = x · x′ is a kernel based on rules (1), (2), and (3). To see this, let fi(x) = xi
(ith coordinate mapping), then

x · x′ = x1x
′
1 + . . .+ xdx

′
d = f1(x) 1 f1(x

′) + · · ·+ fd(x) 1 fd(x
′) (23)

where each term uses rules (1) and (2), and the addition follows from rule (3). Similarly,
the 2nd order polynomial kernel

K(x, x′) = (x · x′) + (x · x′)2 (24)

can be built from assuming that (x · x′) is a kernel, using the product rule to realize the
2nd term, i.e., (x · x′)2 = (x · x′)(x · x′), and finally adding the two. More interestingly,

K(x, x′) = exp(x · x′) = 1 + (x · x′) +
1

2!
(x · x′)2 + · · · (25)

is also a kernel by the same rules. But, since the expansion is an infinite sum, the
resulting feature representation for K(x, x′) is infinite dimensional! This is also why the
radial basis kernel has an infinite dimensional feature representation. Specifically,

K(x, x′) = exp(−‖x− x′‖2/2) (26)

= exp(−‖x‖2/2) exp(x · x′) exp(−‖x′‖2/2) (27)

= f(x) exp(x · x′)f(x′) (28)
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where f(x) = exp(−‖x‖2/2). The radial basis kernel is special in many ways. For
example, any distinct set of training examples are always perfectly separable with the
radial basis kernel (follows from a Michelli theorem about monotone functions of distance
and the invertibility of the corresponding Gram matrices; theorem not shown). In other
words, running the perceptron algorithm with the radial basis kernel will always converge
to a separable solution provided that the training examples are all distinct.
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