
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.S064 Introduction to Machine Learning

Phase 1: clustering (lecture 6)

In this lecture, we will continue our discussion of the K-means algorithm. In par-
ticular, we will discuss two issues crucial for finding good clusters: an initialization
procedure and a method for selecting the number of clusters. We begin by introducing
a slight variant of the K-means algorithm.

1 The K-medoids algorithm

We had previously defined the cost function for the K-means algorithm in terms of
squared Euclidean distance of each point x(i) to the closest cluster representative. We
showed that, for any given cluster, the best representative to choose is the mean of
the points in the cluster. The resulting cluster mean typically does not correspond to
any point in the original dataset. The K-medoids algorithm operates exactly like K-
means but, instead of choosing the cluster mean as a representative, it chooses one of
the original points as a representative, now called an exemplar. Selecting exemplars
rather than cluster means as representatives can be important in applications. Take,
for example, Google News, where a single article is used to represent a news cluster.
Blending articles together to evaluate the “mean” would not make sense in this context.
Another advantage of K-medoids is that we can easily use other distance measures, other
than the squared Euclidian distance.

The K-medoids objective is very similar to the K-means objective:

Cost(C1, . . . , Ck, z(1), . . . , z(k)) =
k∑

j=1

∑
i∈Cj

d(x(i), z(j)) (1)

The algorithm:

1. Initialize exemplars: {z(1), . . . , z(k)} ⊆ {x(1), . . . , x(n)} (exemplars are k points
from the original dataset)

2. Repeat until there is no further change in cost:

(a) for each j: Cj = {i : x(i)’s closest exemplar is z(j)}
(b) for each j: set z(j) to be the point in Cj that minimizes

∑
i∈Cj d(x(i), z(j))

In order to update z(j) in step (b), we can consider each point in turn as a candidate
exemplar and compute the associated cost. Among the candidate exemplars, the point
that produces the minimum cost is chosen as the exemplar.

1

2 Initialization

In the previous lecture, we demonstrated that the K-means algorithm monotonically
decreases the cost (the same holds for the K-medoids algorithm). However, K-means (or
K-medoids) only guarantees that we find a local minimum of the cost, not necessarily the
optimum. The quality of the clustering solution can depend greatly on the initialization,
as shown in the example below1. The example is tailored for K-means.

Given: N points in 4 clusters with small radius δ, and a large distance B between
the clusters. The cost of the optimal clustering will be ≈ O(δ2N). Now consider the
following initialization:

CSE 291 Lecture 2 — The k-means clustering problem Spring 2008

Proof. Let z
(t)
1 , . . . , z

(t)
k , C

(t)
1 , . . . , C

(t)
k denote the centers and clusters at the start of the tth iteration of

k-means. The first step of the iteration assigns each data point to its closest center; therefore

cost(C
(t+1)
1 , . . . , C

(t+1)
k ; z

(t)
1 , . . . , z

(t)
k) ≤ cost(C

(t)
1 , . . . , C

(t)
k ; z

(t)
1 , . . . , z

(t)
k).

On the second step, each cluster is re-centered at its mean; by Lemma 1,

cost(C
(t+1)
1 , . . . , C

(t+1)
k ; z

(t+1)
1 , . . . , z

(t+1)
k) ≤ cost(C

(t+1)
1 , . . . , C

(t+1)
k ; z

(t)
1 , . . . , z

(t)
k).

2.2.2 Initialization

We’ve seen that the k-means algorithm converges to a local optimum of its cost function. The quality of
its final clustering depends heavily on the manner of initialization. If this isn’t done right, things could go
horribly wrong.

Here’s an example. Suppose the data set consists of n points in five tight clusters (of some tiny radius
δ) arranged in a line, with some large distance B between them:

B

4 5321

The optimal 5-clustering has cost roughly δ2n. If we initialize k-means by choosing five centers at random
from the data, there is some chance that we’d end up with no centers from cluster 1, two centers from cluster
3, and one center each from clusters 2, 4, and 5:

4 5321

In the first round of k-means, all points in clusters 1 and 2 will be assigned to the leftmost center. The
two centers in cluster 3 will end up sharing that cluster. And the centers in clusters 4 and 5 will move
roughly to the centers of those clusters.

4 5321

Thereafter, no further changes will occur. This local optimum has cost Ω(B2n). We can make this
arbitrarily far away from the optimum cost by setting B large enough. Thus, good initialization is crucial.

2.3 The k-means++ initializer

One idea for initializing k-means is to use a farthest-first traversal on the data set, to pick k points that are
far away from each other. However, this is too sensitive to outliers. Instead, Arthur and Vassilvitskii suggest
the following procedure, called k-means++: pick the k centers one at a time, but instead of always choosing
the point farthest from those picked so far, choose each point at random, with probability proportional to
its squared distance from the centers chosen already. Here’s the algorithm (given S and k).

pick x ∈ S uniformly at random and set T ← {x}
while |T | < k:

pick x ∈ S at random, with probability proportional to cost({x};T) = minz∈T ‖x− z‖2
T ← T ∪ {x}

2-3

After one iteration of K-means, the center assignment will be as follows:

CSE 291 Lecture 2 — The k-means clustering problem Spring 2008

Proof. Let z
(t)
1 , . . . , z

(t)
k , C

(t)
1 , . . . , C

(t)
k denote the centers and clusters at the start of the tth iteration of

k-means. The first step of the iteration assigns each data point to its closest center; therefore

cost(C
(t+1)
1 , . . . , C

(t+1)
k ; z

(t)
1 , . . . , z

(t)
k) ≤ cost(C

(t)
1 , . . . , C

(t)
k ; z

(t)
1 , . . . , z

(t)
k).

On the second step, each cluster is re-centered at its mean; by Lemma 1,

cost(C
(t+1)
1 , . . . , C

(t+1)
k ; z

(t+1)
1 , . . . , z

(t+1)
k) ≤ cost(C

(t+1)
1 , . . . , C

(t+1)
k ; z

(t)
1 , . . . , z

(t)
k).

2.2.2 Initialization

We’ve seen that the k-means algorithm converges to a local optimum of its cost function. The quality of
its final clustering depends heavily on the manner of initialization. If this isn’t done right, things could go
horribly wrong.

Here’s an example. Suppose the data set consists of n points in five tight clusters (of some tiny radius
δ) arranged in a line, with some large distance B between them:

B

4 5321

The optimal 5-clustering has cost roughly δ2n. If we initialize k-means by choosing five centers at random
from the data, there is some chance that we’d end up with no centers from cluster 1, two centers from cluster
3, and one center each from clusters 2, 4, and 5:

4 5321

In the first round of k-means, all points in clusters 1 and 2 will be assigned to the leftmost center. The
two centers in cluster 3 will end up sharing that cluster. And the centers in clusters 4 and 5 will move
roughly to the centers of those clusters.

4 5321

Thereafter, no further changes will occur. This local optimum has cost Ω(B2n). We can make this
arbitrarily far away from the optimum cost by setting B large enough. Thus, good initialization is crucial.

2.3 The k-means++ initializer

One idea for initializing k-means is to use a farthest-first traversal on the data set, to pick k points that are
far away from each other. However, this is too sensitive to outliers. Instead, Arthur and Vassilvitskii suggest
the following procedure, called k-means++: pick the k centers one at a time, but instead of always choosing
the point farthest from those picked so far, choose each point at random, with probability proportional to
its squared distance from the centers chosen already. Here’s the algorithm (given S and k).

pick x ∈ S uniformly at random and set T ← {x}
while |T | < k:

pick x ∈ S at random, with probability proportional to cost({x};T) = minz∈T ‖x− z‖2
T ← T ∪ {x}

2-3

This cluster assignment will not change during subsequent iterations. The cost of the
resulting clustering is O(B2N). Given that B can be arbitrary large, K-means produces
a solution that is far from the optimal.

One failure of the above initialization was that two centers were placed in close
proximity to each other (see cluster 3) and therefore many points were left far away
from any center/representative. One possible approach to fixing this problem is to pick
k points that are far away from each other. In the example above, this initialization
procedure would indeed yield one center per cluster. But this solution is sensitive to
outliers. To correct this flaw, we will add some randomness to the selection process:
the initializer will pick the k-centers one at a time, choosing each center at random
from the set of remaining points. The probability that a given point is chosen as a
center is proportional to that point’s squared distance from the centers chosen already
thereby steering them towards distinct clusters. This initialize procedure is known as
the K-means++ initializer.

K-means++ initializer
pick x uniformly at random from the dataset, and set T=x
while |T | ≤ k
pick x at random, with probability proportional to the cost minz∈T ||x− z||2
T = T ∪ {x}

We can offer some guarantees for this initialization procedure:

1This example is taken from Sanjoy Dasgupta.

2

K-means++ guarantee Let T be the initial set of centers chosen by K-means++. Let
T ∗ be the set of optimal cluster centers. Then, E|cost(T)| ≤ cost(T ∗)O(logK), where
the expectation is over the randomness in the initialization procedure, and cost(T) =∑n

i=1 minz∈T ‖x(i) − z‖2

3 Choosing K

The selection of k greatly impacts the quality of your clustering solution. Figure 3 shows
how the output of K-means changes as a function of k. In some applications, the desired
k is intuitively clear based on the problem definition. For instance, if we wish to divide
students into recitations based on their interests, we will choose k to be 4 (the number
of recitation times for the class). In most problems, however, the optimal k is not given
and we have to select it automatically.

Let’s start by understanding the connection between the number of clusters k and
the cost function. If every point belongs to its own cluster, then the cost is equal to
zero. At the other extreme, if all the points belong to a single cluster with a center z,

3

then the cost is the maximum:
∑n

i=1 ||x(i)− z||2. Figure 3 shows how the cost decreases
as a function of k. Notice that for l = 4, we observe a sharp decrease in cost. While
the decrease continues for k ≥ 4, it levels off. This observation motivates one of the
commonly used heuristics for selecting k, called the “elbow method”. This method
suggests that we should choose the value of k that results in the highest relative drop in
the cost (which corresponds to an ”elbow” in the graph capturing as a function of k).
However, it may be hard to identify (or justify) such a sharp point. Indeed, in many
clustering applications the cost decreases gradually.

There are a number of well-founded statistical criteria for choosing the number of
clusters. These include, for example, the minimum description length principle (casting
clustering as a communication problem) or the Gap statistics (characterizing how much
we would expect the cost to decrease when no additional cluster structure exists). We
will develop here instead a simpler approach based on assessing how useful the clusters
are as inputs to other methods. In class, we used clustering to help semi-supervised
learning.

In a semi-supervised learning problem we assume that we have access to a small
set of labeled examples as well as a large amount of unannotated data. When the
input vectors are high dimensional, and there are only a few labeled points, even a
linear classifier would likely overfit. But we can use the unlabeled data to reduce the
dimensionality. Consider, for instance, a document classification task where the goal
is to label documents based on whether they involve a specific topic such as ecology.
As you have seen in project 1, a typical mapping from documents to feature vectors
is bag-of-words. In this case, the feature vectors would be of dimension close to the
size of the English vocabulary. However, we can take advantage of the unannotated
documents by clustering them into semantically coherent groups. The clustering would

4

not tell us which topics each cluster involve, but it would put similar documents in the
same group, hopefully placing documents involving pertinent topics in distinct clusters.
If so, knowing the group to which the document belongs should help us classify it. We
could therefore replace the bag-of-words feature vector by one that indicates only to
which cluster the document belongs to. More precisely, given k clusters, a document
that belongs to cluster j can be represented by a k dimensional vector with the j-th
coordinate equal to 1 and the rest set to zero. This representation is admittedly a
bit coarse – all the documents in the same cluster will be assigned the same feature
vector, and therefore end up with the same label. A bit better representation would
be to compile the feature vectors by appending relative distances of the document to
the k clusters. In either case, we obtain low dimensional feature vectors that can be
more useful for topic classification. At the very least, the lower dimensionality will
guard against over-fitting. But how to choose k in this case? Note that none of the
training labels were used to influence what the clusters were. As a result, we can use
cross-validation, with the k dimensional feature vectors, to get a sense of how well the
process generalizes. We would select k (the number of clusters) that minimizes the
cross-validation error.

5

	The K-medoids algorithm
	Initialization
	Choosing K

