
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.S064 Introduction to Machine Learning

Phase 2: mixture models (lecture 12)

Probability models and mixtures

The idea of generative models is that we specify a mechanism by which we can generate
(sample) points such as those given in the training data. This is a powerful idea and
allows us to automatically discover many hidden mechanism that underly the data. We
will start with simple mixture models which assume a two-stage generative process: first
we select which type of point to generate (e.g., which cluster the point belongs to), and
then we generate a point from the corresponding model (cluster). You can think of
mixture models as probabilistic extensions of k-means clustering. However, the idea is
more general and flexible than K-means.

Spherical Gaussian

Let’s start with a simple model for one cluster such as a Gaussian. In other words,
we assume that points x ∈ Rd are generated as samples from the following spherical
Gaussian distribution:

P (x|µ, σ2) = N(x;µ, σ2I) =
1

(2πσ2)d/2
exp(− 1

2σ2
‖x− µ‖2) (1)

where d is the dimension. This is a simple spherically symmetric distribution around
the mean (centroid) µ. The probability of generating points away from the mean µ
decreases the same way (based on the squared distance) regardless of the direction.
A typical representation of this distribution is by a circle centered at the mean µ with
radius σ (called the standard deviation). See Figure ?? below. σ2 is the average squared
variation of coordinates of x from the coordinates of the mean µ (see below). The two
parameters, µ and σ, summarize how the data points in the cluster are expected to vary.

Given a training set of points Sn = {x(t), t = 1, . . . , n}, we can estimate the param-
eters of the Gaussian distribution to best match the data. Note that we can do this
regardless of what the points look like (there may be several clusters or just one). We
are simply asking what is the best Gaussian that fits the data. The criterion we use
is maximum likelihood or ML for short. We evaluate the probability of generating all
the data points, each one independently. This means that the likelihood of the training
data is a product

L(Sn;µ, σ2) =
n∏

t=1

P (x(t)|µ, σ2) (2)

1

Figure 1: Samples from a spherical Gaussian distribution and the corresponding repre-
sentation in terms of the mean (center) and the standard deviation (radius).

Since the training data Sn is fixed (given), we view this as a function of the parameters
µ and σ2. The higher the value of L(Sn;µ, σ2), the better the Gaussian with those
parameters fits the data.

To maximize the likelihood, it is convenient to maximize the log-likelihood instead.
In other words, we maximize

l(Sn;µ, σ2) =
n∑

t=1

logP (x(t)|µ, σ2) (3)

=
n∑

t=1

[
−d

2
log(2πσ2)− 1

2σ2
‖x(t) − µ‖2

]
(4)

= −d
2

log(2πσ2)− 1

2σ2

n∑
t=1

‖x(t) − µ‖2 (5)

By setting ∂/∂µ l(Sn;µ, σ2) = 0, ∂/∂σ l(Sn;µ, σ2) = 0, and solving for the parameters,
we obtain the ML parameter estimates

µ̂ =
1

n

n∑
t=1

x(t), σ̂2 =
1

dn

n∑
t=1

‖x(t) − µ̂‖2 (6)

In other words, the mean µ is simply the sample mean (cf. the choice of centroid for
k-means), and σ2 is the average squared deviation from the mean, averaged across the
points and across the d-dimensions (because we use the same σ2 for each dimension).

A mixture of spherical Gaussians

When the data are best described by multiple clusters, we need to specify multiple
Gaussians, one for each cluster. Assuming there are exactly k clusters (this is our

2

hypothesis, not necessarily true) we would define

P (x|µ(i), σ2
i), i = 1, . . . , k (7)

and have to somehow estimate µ(1), . . . , µ(k), σ2
1, . . . , σ

2
k without knowing a priori where

the clusters are, i.e., which points belong to which cluster. Since the clusters may vary
by size as well, we also include parameters p1, . . . , pk that specify the frequency of points
we would expect to see in each cluster. Note that k-means clustering did not include
either different spreads (different σ2

i ’s) nor different a priori sizes (different pi’s).
So how do we generate data points from the mixture? We first sample index i

to see which cluster we should use. In other words, we sample i from a multinomial
distribution governed by p1, . . . , pk, where

∑k
i=1 pi = 1. Think of throwing a biased

k-faced die. Larger pi means that we generate more points from that clusters. Once we
know the cluster, we can sample x from the corresponding Gaussian. More precisely,

i ∼ Multinomial(p1, . . . , pk) (8)

x ∼ P (x|µ(i), σ2
i) (9)

Figure 2 below shows data generated from the mixture model with colors identifying
the clusters. We have also drawn the corresponding Gaussians, one for each cluster, as
well as the prior frequencies1 (a.k.a. mixing proportions) pi

0.189

0.346

0.465

Figure 2: Samples from a mixture of Gaussian distribution with colors indicating the
sampled cluster labels. The Figure also shows the corresponding Gaussian cluster mod-
els, included the prior cluster frequencies as numbers.

The data we have do not typically come with labels identifying the clusters. Indeed,
the main use of mixture models (as in clustering) is to try to uncover these hidden labels,
i.e., find the underlying clusters. To this end, we must evaluate the probability that each

1For this figure, the prior frequencies appear to match exactly the cluster sizes. This is not true in
general, only on average, as the labels are sampled.

3

data point x could come as a sample from our mixture model, and adjust the model
parameters so as to increase this probability. Each x could have been generated from
any cluster, just with different probabilities. So, to evaluate P (x|θ), where θ specifies
all the parameters in our mixture model

θ = {µ(1), . . . , µ(k), σ2
1, . . . , σ

2
k, p1, . . . , pk}, (10)

we must sum over all the alternative ways we could have generated x (all the ways that
Eq.(9) could have resulted in x). In other words,

P (x|θ) =
k∑

i=1

piP (x|µ(i), σ2
i) (11)

This is the mixture model we must estimate from data Sn = {x(t), t = 1, . . . , n}. It is not
easy to resolve where to place the clusters, and how they should be shaped. We’ll start
with a simpler problem of estimating the mixture from labeled points. Then generalize
the solution to estimated mixtures from Sn alone.

Estimating mixtures: labeled case

If our data points came labeled, i.e., each point would be assigned to a single cluster,
we could estimate our Gaussian models as before. In addition, we could evaluate the
cluster sizes just based on the actual numbers of points. For later utility, let’s expand
on this a bit. Let δ(i|t) be an indicator that tells us whether x(t) should be assigned to
cluster i. In other words,

δ(i|t) =

{
1, if x(t) is assigned to i
0, otherwise

(12)

Using this notation, our maximum likelihood objective is

n∑
t=1

[
k∑

i=1

δ(i|t) log(P (x(t)|µ(i), σ2
i)pi)

]
=

k∑
i=1

[
n∑

t=1

δ(i|t) log(P (x(t)|µ(i), σ2
i)pi)

]
(13)

where, in the first expression, the inner summation over clusters simply selects the
Gaussian that we should use to generate the corresponding data point, consistent with
the assignments. In the second expression, we exchanged the summations to demonstrate
that the Gaussians can be solved separately from each other, as in the single Gaussian
case. Note that we also include pi in generating each point, i.e., the probability that we
would select this cluster from the mixture model for this point. The ML solution based

4

on labeled points is given by

n̂i =
n∑

t=1

δ(i|t) (number of points assigned to cluster i) (14)

p̂i =
n̂i

n
(fraction of points in cluster i) (15)

µ̂(i) =
1

n̂i

n∑
t=1

δ(i|t)x(t) (mean of points in cluster i) (16)

σ̂2
i =

1

dn̂i

n∑
t=1

δ(i|t)‖x(t) − µ̂(i)‖2 (mean squared spread in cluster i) (17)

Estimating mixtures: the EM-algorithm

Our goal is to maximize the likelihood that the data was generated by a mixture model.
In other words, on a log-scale, we try to maximize

l(Sn; θ) =
n∑

t=1

logP (x(t)|θ) =
n∑

t=1

log

(
k∑

i=1

piP (x(t)|µ(i), σ2
i)

)
(18)

with respect to the parameters θ. Unfortunately, the summation inside the logarithm
makes this a bit nasty to optimize. More intuitively, it is clearly hard to entertain
different arrangements of k Gaussians that best explain the data.

Our solution is an iterative algorithm known as the Expectation-Maximization algo-
rithm or the EM-algorithm for short. The trick we use is to return the problem back
to the simple labeled case. In other words, we can use the current mixture model to
assign examples to clusters (see below), then re-estimate each cluster model separately
based on the points assigned to it, just as in the labeled case. Since the assignments
were based on the current model, and the model was just improved by re-estimating the
Gaussians, the assignments would potentially change as well. The algorithm is therefore
necessarily iterative. The setup is very analogous to k-means. However, here we cannot
fully assign each example to a single cluster. We have to entertain the possibility that
the points were generated by different cluster models. We will make soft assignments,
based on the relative probabilities that each cluster explains (can generate) the point.

We need to first initialize the mixture parameters. For example, we could initialize
the means µ(1), . . . , µ(k) as in the k-means algorithm, and set the variances σ2

i all equal
to the overall data variances:

σ̂2 =
1

dn

n∑
t=1

‖x(t) − µ̂‖2 (19)

where µ̂ is the mean of all the data points. This ensures that the Gaussians can all
“see” all the data points (spread is large enough) that we do not a priori assign points

5

to specific clusters too strongly. Since we have no information about the cluster sizes,
we will set pi = 1/k, i = 1, . . . , k.

The EM-algorithm is then defined by the following two steps.

• E-step: softly assign points to clusters according to the posterior probabilities

p(i|t) =
piP (x|µ(i), σ2

i)

P (x|θ)
=

piP (x|µ(i), σ2
i)∑k

j=1 pjP (x|µ(j), σ2
j)

(20)

Here
∑k

i=1 p(i|t) = 1. These are exactly analogous to (but soft versions of) δ(i|t)
in the labeled case. Each point x(t) is assigned to cluster i with weight p(i|t). The
larger this weight, the more strongly we require cluster i to generate this point in
the M-step below.

• M-step: Once we have p(i|t), we pretend that we were given these assignments (as
softly labeled examples) and can use them to estimate the Gaussians separately,
just as in the labeled case.

n̂i =
n∑

t=1

p(i|t) (effective number of points assigned to cluster i) (21)

p̂i =
n̂i

n
(fraction of points in cluster i) (22)

µ̂(i) =
1

n̂i

n∑
t=1

p(i|t)x(t) (weighted mean of points in cluster i) (23)

σ̂2
i =

1

dn̂i

n∑
t=1

p(i|t)‖x(t) − µ̂(i)‖2 (weighted mean squared spread) (24)

We will then use these parameters in the E-step, and iterate.

This simple algorithm is guaranteed to monotonically increase the log-likelihood of
the data under the mixture model (cf. k-means). Just as in k-means, however, it may
only find a locally optimal solution. But it is less “brittle” than k-means due to the
soft assignments. Figure 3 below shows an example of running a few steps of the EM-
algorithm. The points are colored based on the soft assignments in the E-step. Initially,
many of the points are assigned to multiple clusters. The assignments are clarified
(mostly in one cluster) as the algorithm finds where the clusters are.

6

0.377

0.362

0.261

0.359

0.330

0.310

0.330

0.296

0.374

0.293

0.303

0.405

0.246

0.336

0.418

0.209

0.348

0.442

initial after 1 iteration after 2 iterations

after 3 iterations after 4 iterations after 5 iterations

Figure 3: An example of running the EM-algorithm for five iterations

7

