
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.S064 Introduction to Machine Learning

Midterm exam (March 21, 2013)

Your name & ID:

• This is a closed book exam

• You do not need nor are permitted to use calculators

• The value of each question – number of points awarded for full credit – is shown
in parenthesis

• The problems are not necessarily in any order of difficulty. We recommend that
you read through all the problems first, then do the problems in whatever order
suits you best.

• Record all your answers in the places provided
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Problem 1.1 Problem 2.1 Problem 2.2 Problem 3.1 Problem 4.1 Total

12 12 10 14 9 57

(1.1) The perceptron algorithm remains surprisingly popular for a 50+ year old (al-
gorithm). Hard to find a simpler algorithm for training linear or non-linear classifiers.
Worth knowing this algorithm by heart, yes?

(a) (6 points) Let θ = 0 (vector) initially. We run the perceptron algorithm to train
y = sign(θ · x), where x ∈ R2, using the three labeled 2-dimensional points in the
figure below. In each figure, approximately draw both θ and the decision boundary
after updating the parameters (if needed) based on the corresponding point.
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(b) (6 points) We were wondering what would happen if we normalized all the input
examples. In other words, instead of running the algorithm using x, we would
run it with feature vectors φ(x) = x/‖x‖. Let’s explore this with linear classifiers
that include offset, i.e., we use y = sign(θ · x + θ0) or y = sign(θ · φ(x) + θ0) after
feature mapping. In the figure below, label all the points such that 1) the perceptron
algorithm wouldn’t converge if they are given as original points, 2) the algorithm
would converge if run with φ(x) = x/‖x‖.
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�1 The points are mapped ra-
dially to the unit circle. The
initial set of points are not
linearly separable. The re-
sulting three points on the
unit circle are.
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(2.1) Support vector machines (SVMs) are so popular that we decided to try them
out a bit in a simple setting where x ∈ R. We used both linear and non-linear SVMs:

min w2/2 subject to y(t)(wx(t) + w0) ≥ 1, t = 1, . . . , n (1)

min ‖θ‖2/2 subject to y(t)(θ · φ(x(t)) + θ0) ≥ 1, t = 1, . . . , n (2)

where φ(x) is a feature vector constructed from the real valued input x. We wish to
compare the resulting classifiers when φ(x) = [x, x2]T .

(a) (3 points) Provide three input points x(1), x(2), and x(3), where x(i) ∈ [0, 4], and
their associated ±1 labels such that 1) they cannot be separated with the linear
classifier, but 2) are separable by the non-linear classifier with φ(x) = [x, x2]T . You
may find Figure 2.1 helpful in answering this question.
(x(1), y(1)) = (( 0 ,+1 ))
(x(2), y(2)) = (( 2 , -1 ))
(x(3), y(3)) = (( 4 ,+1 ))

(b) (4 points) Map your three labeled points as labeled feature vectors in Figure 2.1.
Approximately draw the resulting decision boundary in the feature space of the
non-linear SVM classifier with φ(x) = [x, x2]T .
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Figure 2.1. Feature space.
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(c) (3 points) Consider two labeled points (x = 1, y = 1) and (x = 3, y = −1). Is
the resulting geometric margin we attain in the feature space using feature vectors
φ(x) = [x, x2]T

(( X )) greater, (( )) equal, or (( )) smaller

than the geometric margin resulting from using the input x directly?

Answer: we could simply omit the 2nd coordinate in the feature space and get the
same margin as in the original input space. Including the 2nd coordinate can only
further increase the margin.

(d) (2 points) In general, is the geometric margin we would attain using scaled feature
vectors φ(x) = 2[x, x2]T

(( X )) greater, (( )) equal, (( )) smaller, or (( )) could be any of these

in comparison to the geometric margin resulting from using φ(x) = [x, x2]T ?

Answer: the geometric margin scales with the feature vectors.

(2.2) (10 points) We were given a dataset with n = 10 labeled two-dimensional
examples. Having learned about the support vector machine, we wanted to try it out on
this data. However, we were unsure which kernel function to use. So we asked students
in the class for possible kernel functions, and tried each one of them:

(1) K(x, x′) = x · x′
(2) K(x, x′) = (x · x′) + 2(x · x′)2
(3) K(x, x′) = 1− 2(x · x′)2
(4) K(x, x′) = (1 + x · x′)5

(a) For any kernel K(x, x′) = φ(x) · φ(x′). What can you say about K(x, x) in general?
(( )) K(x, x) is never 0, (( X )) K(x, x) < 0 never, (( )) K(x, x) > 1 always

Answer: K(x, x) = φ(x) · φ(x) = ‖φ(x)‖2 ≥ 0.

(b) The optimization routine for the dual SVM problem complained about one of the
kernels, and it couldn’t be used further. Which one (1-4)? (( 3 ))

Answer: from part (a) we know that K(x, x) ≥ 0. Use ‖x‖ = 1 for “kernel” (3) to
see that it is negative so cannot be kernel.

(c) Only one of the kernels resulted in zero training error. Which one (1-4)? (( 4 ))

Answer: kernel (4) is the highest order polynomial kernel. If any of them achieves
zero training error, it is this one.
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(d) As far as the training error is concerned, one of the kernels was by far the worst.
Which one (1-4)? (( 1 ))

Answer: the linear kernel is the simplest one (the weakest classifier).

(e) After training the three classifiers (one we couldn’t use), we obtained additional
data to assess their test errors. Which one would you expect to have the lowest test
error (1-4)? (( 2 ))

Answer: because we only have n = 10 training examples, we cannot reliably use
5th order polynomial terms. On the other hand, the simple linear classifier didn’t
perform well even on the training set. So must be (2).

(3.1) We are faced with a content filtering problem where the idea is to rank new
songs by trying to predict how they might be rated by a particular user. Each song
x is represented by a feature vector φ(x) whose coordinates capture specific acoustical
properties. The ratings are binary valued y ∈ {0, 1} (“need earplugs” or “more like
this”). Given n already rated songs, we decided to use regularized linear regression to
predict the binary ratings. The training criterion is

J(θ) =
λ

2
‖θ‖2 +

1

n

n∑
t=1

(y(t) − θ · φ(x(t)))2/2 (3)

(a) (8 points) Let θ̂ be the optimal setting of the parameters with respect to the above
criterion, which of the following conditions must be true (check all that apply)

(( X )) λ θ̂ − 1
n

∑n
t=1(y

(t) − θ̂ · φ(x(t)))φ(x(t)) = 0

Answer: this is the optimality condition

(( )) J(θ̂) ≥ J(θ), for all θ ∈ Rd

Answer: we minimize the objective so θ̂ is the minimum, not the maximum

(( X )) If we increase λ, the resulting ‖θ̂‖ will decrease

Answer: the more we emphasize the norm ‖θ‖2 in the optimization problem,
the smaller its value will be.

(( X )) If we add features to φ(x) (whatever they may be), the resulting squared
training error will NOT increase

Answer: we could ignore the additional coordinates, setting the corresponding θ
values to zero. As a result, we can always attain the same error. Optimizing the
parameters for the additional coordinates can only minimize the error further.
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(b) (3 points) Once we have the estimated parameters θ̂, we must decide how to predict
ratings for new songs. Note that the possible rating values are 0 or 1. When do we
choose rating y = 1 for a new song x? Please write the corresponding expression.

y = 1 if θ̂ · φ(x) ≥ 0.5. Note that since the target ratings are 0 or 1, the resulting
regression function values (predictions) are also mostly between 0 and 1. So, for
example, θ̂ · φ(x) ≥ 0 would be a poor decision rule (most if not all instances would
be rated y = 1).

(c) (3 points) If we change λ, we obtain different θ̂, and therefore different rating
predictions according to your rule above. What will happen to your predicted
ratings when we increase the regularization parameter λ?

When we increase λ, ‖θ̂‖ will decrease. As a result, the regression function val-
ues, i.e., θ̂ · φ(x), will also tend towards zero. Given the decision rule above, the
predictions are going to be biased towards y = 0.
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(4.1) Consider the simple K-means algorithm for clustering. Each iteration of the
algorithm consists of two steps, assigning points to the centroids, and updating the
centroids based on the points assigned to them. We will assume that k = 2.

(a) (2 points) If we initialize the centroids to be the means of the two well-separated
clusters, will the centroids change after the first iteration? (Y/N) (( N ))

(b) (3 points) If we initialize the centroids by drawing a random point from each of
the two well-separated clusters, how many iterations does it take for the k-means
to converge? (( 1 ))

Answer: since the clusters are well-separated, the initialization will not change
assignments of points to centroids. The centroids become the cluster means (the
fixed points) after the first iteration.

(c) (4 points) Consider two spherical (circle-like) clusters of radius δ as shown below.
The clusters are centered at locations −x and x. For which values of x would
the k-means algorithm fail to find the centers of the two clusters regardless of the
initialization?

|x| < δ. The best initialization would be to start with the centers of the two spherical
clusters. When |x| < δ, as in the figure below, the clusters overlap. Since points are
assigned to their closest centroids, divided according to the blue line, the resulting
cluster means no longer lie at the center of the original clusters.
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