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Phase 3: mixture models, model selection (lecture 13)

Mixture models cont’d

We have previously introduced mixture models, and how to estimate them from incom-
plete data {x(1), . . . , x(n)}, i.e., data without cluster labels. In particular, we saw how to
estimate a mixture of Gaussians model

P (x|θ) =
k∑
i=1

piP (x|µ(i), σ2
i ) (1)

where each mixture component P (x|µ(i), σ2
i ) is a spherical Gaussian distribution

P (x|µ(i), σ2
i ) =

1

(2πσ2
i )
d/2

exp(− 1

2σ2
i

‖x− µ(i)‖2) (2)

The parameters θ of the mixture model include the mixing proportions p1, . . . , pk, the
means µ(1), . . . , µ(k), and the variances σ2

1, . . . , σ
2
k. Our estimation criterion was to find

the parameters that maximize the log-likelihood of D = {x(1), . . . , x(n)}, i.e., maximize

l(D; θ) =
n∑
t=1

logP (x(t)|θ) =
n∑
t=1

log

[
k∑
i=1

piP (x(t)|µ(i), σ2
i )

]
(3)

Note that, in the absence of cluster/component labels, we must sum over all the alter-
native ways of generating each data point x(t). This summation ties all the parameters
θ together in the context of each data point, and results in a challenging (non-convex)
optimization problem. However, we can still use the EM algorithm to find a locally
optimal solution.

The EM-algorithm alternates between two steps: 1) softly assigning points to com-
ponents (completing the data), and 2) optimizing each component separately from the
completed data (as if the completed data were given a priori). Specifically,

• E-step: softly assign points to clusters based on posterior probabilities

p(i|t) =
piP (x(t)|µ(i), σ2

i )∑k
j=1 pjP (x(t)|µ(j), σ2

j )
, i = 1, . . . , k, t = 1, . . . , n (4)
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• M-step: Given “weights” p(i|t), estimate each Gaussian separately from their
“weighted data”

n̂i =
n∑
t=1

p(i|t), p̂i =
n̂i
n
, µ̂(i) =

1

n̂i

n∑
t=1

p(i|t)x(t), (5)

σ̂2
i =

1

dn̂i

n∑
t=1

p(i|t)‖x(t) − µ̂(i)‖2 (6)

The EM-steps are repeated until convergence (little change in the parameters and/or
log-likelihood).

How we initialize the mixture parameters matters a great deal. For example, suppose
we set pi = 1/k, µi = µ, σ2

i = σ2, i = 1, . . . , k, for some µ and σ2. In other words, we
initialize all the Gaussians to be the same. How will the EM-algorithm proceed in this
case? In the E-step, we softly assign points to Gaussians based on their probabilities
of generating the points. But, given our initialization, there’s no difference between the
component Gaussians. As a result, p(i|t) = 1/k, i = 1, . . . , k, for all the points. In
the subsequent M-step, all the Gaussians see the same weighted data, resulting again
in the same (but updated) Gaussians. The whole mixture in this case acts like a single
Gaussian distribution. It is important that the initialization produces clearly distinct
components.

Another failure mode of the mixture estimation process (as we have defined it so far)
is that one (or more) of the component Gaussians could end up wrapping themselves
around a single point. In other words, we could set µ(i) = x(t) for some t, and reduce
the corresponding variance σ2

i to zero. Specifically, if µ(i) = x(t)

P (x(t)|µ(i), σ2
i ) = P (x(t)|x(t), σ2

i ) =
1

(2πσ2
i )
d/2

exp( 0 ) (7)

which can be made arbitrarily large by decreasing σ2
i . The resulting Gaussian will turn

into a narrow spike around the specific point. In terms of the log-likelihood objective,
this is highly advantageous as we can increase the objective value without a bound!
What is going on? The problem is that we defined the likelihood objective in terms of
generating actual points. As we are dealing with densities (Gaussians over a continuous
space), the likelihood of generating a particular point (a real valued vector) is actually
zero. In other words, we should really write P (x|µ, σ2)∆x where ∆x is a little volume
element around the observed point (or, better yet, we should integrate over the volume
element). ∆x represents the fact that we are unlikely have observed the point with
infinite precision. An easier route around this problem is to regularize the variances so
that the mixture cannot exploit this caveat.
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Regularization and the EM algorithm

Let’s begin with the problem of estimating a single Gaussian. We will adjust our log-
likelihood objective in such a way that, in addition to the standard log-likelihood, we
will add a regularization penalty – now a prior probability – over the potentially difficult
variance parameter σ2. In other words, we will maximize penalized log-likelihood

n∑
t=1

logP (x|µ, σ2) + logP (σ2|α, s2) (8)

where the hyper-parameters (parameters of the prior) α and s2 encode the “default”
answer for the variance, and how much we are pushing σ2 towards it. This is similar to
the squared norm regularization penalty in the context of classification or regression.

How should we specify P (σ2|α, s2)? One general way to construct such a prior
(conjugacy) is to imagine “prior data” and set the prior distribution equal to the cor-
responding likelihood (with normalization). The characteristics of the prior data will
then determine what the default answer is for the variance, and how strongly we believe
in it (how much data we imagine). The more prior data we have, the more the estimate
of σ2 will go towards the default answer. More specifically, suppose our model is a zero
mean Gaussian distribution, and we observe α points exactly s2 distance away from the
origin. Then

l(D′;σ2) =

[
1

(2πσ2)d/2
exp(− 1

2σ2
s2)

]α
(9)

and we would make P (σ2|α, s2) proportional to this likelihood. In other words, by
specifying such a prior, we are pushing σ2 towards an answer we would get if we observed
α points exactly s2 distance away from the mean (origin in this case).

How will the prior change the estimated value of σ2 in the penalized log-likelihood
formulation? Recall that if we estimated the variance without any prior penalty, we
would get

σ̂2 =
1

dn

n∑
t=1

‖x(t) − µ̂‖2 (10)

By including the prior, we obtain

σ̂2 =
1

d(n+ α)

[
n∑
t=1

‖x(t) − µ̂‖2 + ασ2

]
(11)

The number of data points is now n + α representing the combination of actual data
(size n) and the imagined prior data (size α). Moreover, in the sum that adds the
squared distances of observed points from the mean, we included αs2 to represent α
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observations exactly s2 away from the mean. By increasing α, we steer the variance
estimate σ̂2 towards the “default” s2/d. In particular, in the absence of any data,
σ̂2 = s2/d. If there’s only a single data point x(1), and µ = x(1) (since this parameter is
not regularized), we get σ̂2 = 1

d(1+α)
(0 + αs2) rather than zero.

The effect of the prior is analogous within the EM algorithm. We add a prior
distribution (penalty in the log-likelihood) for each of the variance parameters σ2

i . As a
result, the E-step remains as before. After all, in this step, the parameters are assumed
fixed (we are merely using the current mixture to complete the data). The M-step
changes only in terms of the variance update, replacing Eq.(6) with

σ̂2
i =

1

d(n̂i + α)

[
n∑
t=1

p(i|t)‖x(t) − µ̂(i)‖2 + αs2

]
, i = 1, . . . , k (12)

analogously to the single Gaussian case. While the change appears small, the effect can
be substantial, especially for large k where n̂i =

∑n
t=1 p(i|t) may be small for some of

the Gaussian components.

Model selection for mixtures

How do we select the number of mixture components, i.e., k? We can certainly run the
EM algorithm with each plausible value of k such as k = 1, 2, . . . , 10. As k increases, we
may have to run the algorithm multiple times for the same k, however, using different
random initializations, in order to find the k mixture (parameters θ̂) that give the highest
(penalized) log-likelihood. Let l(D; θ̂) be the log-likelihood value that we achieve with
such parameters. Could we just use l(D; θ̂) for selecting k? Unfortunately, not. l(D; θ̂)
increases (more precisely, does not decrease) as k increases, regardless of data. See
Figure 1 for an example. This is because a mixture with k + 1 components already
contains a mixture with k components. The additional component could always be set
to be equal to one of the others, effectively exploring only a k-mixture. But this is not
the best use of the additional degrees of freedom that come with the k+ 1th component.
Note that, in practice, the log-likelihood may decrease with k because mixtures with
more components are more difficult to estimate. So the log-likelihood values we can
obtain may represent local rather than global optima.

Just as we needed to regularize the choice of the variance parameter earlier, we need
to regularize the choice of k. In other words, we need to introduce a penalty for k
that appropriately penalizes the fact that mixture models with larger k would fit better
any finite training data, even if the data came from a single Gaussian. The penalty we
use should take away this unfair advantage from larger k. We are looking for a model
selection criterion for k.

We could always use cross-validation. However, since finding a single k− mixture
is already challenging, using cross-validation can be computationally burdensome. An-
other strategy is to use a simpler approximate criterion. In particular, we will use a
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criterion known as the Bayesian Information Criterion or BIC for short. It is given by

BIC(D; θ̂) = l(D; θ̂)− # of param.

2
log(n) (13)

where the penalty term approximates the advantage that we would expect to get from
larger k regardless of the data. The BIC score is easy to evaluate for each k as we
already get l(D; θ̂) from the EM algorithm. All that we need in addition is to evaluate
the penalty term. A mixture of k spherical Gaussians in d dimensions has exactly
k(d+ 2)− 1 parameters. Figure 1 below shows that the resulting BIC score indeed has
the highest value for the correct 3-component mixture.

BIC is an asymptotic (large n) approximation to a statistically more well-founded
criterion known as the Bayesian score. As such, BIC will select the right model (under
certain regularity conditions) when n is (very) large relative to d. However, we will
adopt the BIC criterion here even for smaller n due to its simplicity.
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BIC(D; ✓̂) = �131.16 BIC(D; ✓̂) = �118.93 BIC(D; ✓̂) = �121.78

Figure 1: 2, 3, and 4 component mixtures estimated for the same data. The correspond-
ing log-likelihoods and the BIC scores are shown below each plot.

5


