
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.S064 Introduction to Machine Learning

Phase 2: generative models (lecture 11)

So far we have primarily focused on classification, where the goal is to find a separator
that sets apart two classes. The internal structure of the classes is not directly captured
by (or cared for) the classifier. In fact, datasets with very different structure may have
exactly the same separator. Intuitively, understanding the structure of the data should
be helpful for classification as well. We have touched this issue briefly in the context
of K-means clustering. However, clustering provided a limited way of capturing the
properties of input examples. For example, simply providing a cluster representative
shows nothing about how the points are spread. Moreover, not all data have clusters
of the type that K-means is geared to find. An example of such a dataset is shown in
Figure 1.

+"
+"

+"

+"+"

+"
+"

#"
#"

#"

#"

#" #"

#"

Figure 1: A labeled dataset where the class distinction cuts across a single cluster

Today, we will discuss using probabilistic models for data. We will demonstrate how
these models can be directly used in classification: once we have a model for each class of
examples, we can estimate how likely it was generated by each class-specific model, and
determine the predicted label accordingly. A central question in probabilistic modeling
is how to select a model that best fits the properties of the data we are trying to capture.
We will describe several models and their properties.

• Gaussians Consider a cluster of points shown in Figure 2. To summarize this
data, the model should capture (1) the center of the group (mean); (2) how spread
the points are from the center. The simplest model, the one that makes fewest
assumptions above and beyond the mean and the spread, is a Gaussian:

P (x;µ, σ) = C · e−
1

2σ2
||x−µ||2

The value of σ determines how the probability of seeing points away from the
mean decays. A small σ will result in a tight cluster of points (points close to the

1

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2: A cluster of points.

mean), while a large value of σ corresponds to a widely spread cluster of points.
Note that the normalization constant C ensures that P integrates to 1, thereby
yielding a valid probability distribution over the space Rd.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 3: Two cluster of points.

• Mixture of Gaussians Next consider data shown in Figure 3 that is divided into
two or more clusters of points. We can describe this data using two Gaussians, one
for each cluster. Such a model should include the different locations and (possibly
different) spreads of two Gaussians, but also how many points are in each cluster.
Models built from this perspective are known as mixture models

• Multinomials We can use probabilistic models with data other than real valued
points in Rd. Consider, for example, documents represented by bags-of-words.
While in supervised classification we mapped each document into a point in space,
here we will look at a different representation: we will treat text as a bag of words

2

to be generated. Our model will generate different bags of words with different
probability. We are looking for a model that generates the observed bags (i.e.,
documents in our dataset) with high probability.

To make our task simpler, we will further simplify the setting by assuming that
words in a document are generated one word at a time, each word independently
from others, but with a specific distribution. To specify such a model, each word
w ∈ W is associated with parameter θw

θw ≥ 0∑
w∈W

θw = 1

P (w|θ) = θw

For example, consider two probability distributions over four words: dog, cat,
tulip, rose. The first distribution has parameters θdog = 0.5, θcat = 0.4, θtulip =
0.05, θrose = 0.05, while the second one is parametrized as θdog = 0.1, θcat = 0.1,
θtulip = 0.5, θrose = 0.3. Now consider the following document (i.e., bag of words):
dog, dog, cat, dog, cat, tulip. Which distribution is more likely to generate this
document? To answer this question, we need to compute the likelihood of the
document D = {w!, w2, . . . , wn} under a given parameter setting θ:

P (D|θ) =
N∏
i=1

θwi =
∏
w

θn(w)w ,

where n(w) is a count of w in document D.

In oder to use these probabilistic models, we need a way to estimate the param-
eters. Let’s start with the case of a single document. We want to find θ that
maximize the likelihood of observed data

max
θ
P (D|θ)⇔ max

θ
logP (D|θ)

logP (D|θ) = log
∏
w

θn(w)w =
∑
w

n(w) log θw

We need to find θ that maximizes this expression. To see how this works, let’s
make it even simpler and assume that our vocabulary is of size 2, i.e., W = {0, 1}.
Then

logP (D|θ) = n(0) log θ0 + n(1) log θ1 = n(0) log(1− θ1) + n(1) log θ1

3

∂

∂θ1
(n(0) log(1− θ1) + n(1) log θ1) = 0

− n(0)

1− θ1
+
n(1)

θ1
= 0

−n(0)θ1 + n(1)(1− θ1) = 0

−n(0)θ1 + n(1)− n(1)θ1 = 0

−θ1(n(0) + n(1)) = −n(1)

θ̂1 =
n(1)

n(0) + n(1)

Using Lagrange multipliers, you can show that parameters will have a similar form
for an arbitrary size vocabulary:

θ̂w =
n(w)∑

w′∈W n(w′)

In the discussion above, we considered training from a single document. Similar
argument can be applied to the case where we are estimating parameters from
multiple documents. Due to our independence assumption, the documents are
”collapsed” into a giant bag, so we compute word counts across the documents.

P (D1, . . . , DT |θ) =
T∏
t=1

P (Dt|θ) =
∏
w∈W

θ
∑T
t=1 nt(w)

w

Until now, we have seen two models: Gaussians and multinomials. Let’s put these
models in use for classification problems. We will start with the task of document
classification. We are given two sets of documents, with known labels “+” and “-”.
We are interested in a model that generates documents for each class. Those are class-
conditional distributions:

P (D|θ+) =
∏
w

(θ+w)n(w)

P (D|θ−) =
∏
w

(θ−w)n(w)

We estimate θ+w and θ−w from the corresponding labeled documents using the method
described above. Now, we have two multinomials, each tailored to generate one class
of documents. Given a document with an unknown label, how can we classify it?
Assume that the likelihood of “+” and “-” is the same (later, we will remove this

4

assumption). We will select the label based on which model assigns a higher likelihood
to the document:

log
P (D|θ+)

P (D|θ−)
=

{
≥ 0, +

< 0, −

where the log-likelihood ratio as a discriminant function can be written as

log
P (D|θ+)

P (D|θ−)
= logP (D|θ+)− logP (D|θ−)

=
∑
w

n(w)(log θ+w − log θ−w)

=
∑
w

n(w) log
θ+w
θ−w︸ ︷︷ ︸

=θw

This expression represents a linear classifier in a feature representation that concate-
nates word counts:

log
P (D|θ+)

P (D|θ−)
= Φ(D) · θ =

 n(w1)
...

n(w|W |)


 θ1

...
θ|W |

 (1)

Now let’s consider the case where the likelihood of the label classes is not the same.
We can add the prior class frequencies, P (y = +) and P (y = −), directly to the log-
likelihood ratio, i.e.,

log
P (D|θ+)P (y = +)

P (D|θ−)P (y = −)
=

∑
w

n(w) log
θ+w
θ−w︸ ︷︷ ︸

θw

+ log
P (y = +)

P (y = −)︸ ︷︷ ︸
=θ0

=
∑
w

n(w)θw + θ0 (2)

or, equivalently, classify according to the posterior probability

P (y = +|D) =
P (D|y = +)P (y = +)

P (D)
=

P (D|y = +)P (y = +)

P (D|y = +)P (y = +) + P (D|y = −)P (y = −)
,

where P (D|y = +) = P (D|θ+) =
∏

w(θ+w)n(w). Once we estimated θ+w and θ−w from
the training data, we can classify an unlabeled document D by comparing the values of
P (y = +|D) and P (y = −|D).

Smoothing One important issue related to parameter estimation is accounting for
unseen events. Consider what happens if our training sample does not include word w?
In this case, θ̂w = 0. This problem will be particularly acute if we have little training
data and many words are unseen during training.

5

One way to deal with the the sparsity problem is to introduce a prior distribution
over parameters θ:

P (θ|λ1, . . . , λn) = P (θ|λ) = C ·
∏
w

θλww ,

where λ1, . . . , λn are hyper-parameters. θ that maximizes this prior is simply θ̂w =
λw/

∑
w′ λw′ and represents the “default” value that the prior highlights. During es-

timation, the hyper-parameters λ1, . . . , λn act as pseudo-counts that supplement the
observed counts in the data:

P (θ|D) ∝ P (D|θ)P (θ|λ) =
∏
w

[θn(w)w · θλww] =
∏
w

θn(w)+λww

In other words, when we find the parameter values that maximize the posterior P (θ|D),
we simply combine the observed counts with the pseudo counts from the prior. When
observed counts are much larger than the hyper-parameters, the effect of the prior is
miniscule. However, if the dataset is small, the pseudo counts will push the parameter
estimates towards the default values specified by the prior.

Classification using Gaussians Similarly to multinomials, we can use Gaussians for
classification. We assume that each class is associated with its own Gaussian. For sim-
plicity, we assume that both of them have the same variance. Thus, our two Gaussians
will have parameters µ+, σ and µ−, σ. As a result,

log
P (x|µ+, σ)

P (x|µ−, σ)
= logP (x|µ+, σ)− logP (x|µ−, σ)

= log[C · e−
1

2σ2
||x−µ+||2]− log[C · e−

1
2σ2
||x−µ−||2]

=
1

2σ2
(2x · µ+ − 2x · µ−)− ||µ+||2 + ||µ−||2

=
x · (µ+ − µ−)

σ2
− 1

2σ2
(||µ+||2 − ||µ−||2)

As in the case with multinomials, the derived classifier is linear in x. The offset θ0
is given by 1

2σ2 (||µ+||2 − ||µ−||2), while θ = (µ+−µ−)
σ2 .

6

