
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.S064 Introduction to Machine Learning

Phase 3: model selection, generalization (lecture 14)

Model selection for classifiers

In the last lecture, we discussed the problem selecting the number of components to use
in a mixture model, introducing the BIC-score as an approximate selection criterion.
The BIC score was composed of two parts, 1) the log-likelihood of the training data,
maximized with respect to the available parameters, and 2) a penalty term that offsets
the likelihood gain from having many parameters. We will do the same here for classi-
fication problems, replacing log-likelihood with a classification error. However, we go a
step further, casting the model selection problem in terms of finding a model with the
best guarantees of generalization.

To fix ideas, let’s define our classification task a bit more precisely. We assume that
training and test examples are drawn independently at random from some fixed but
unknown distribution P ∗ over (x, y). So, for example, each (x(t), y(t)) in the training
set Sn = {(x(t), y(t)), t = 1, . . . , n}, is sampled from P ∗. You can view P∗ as a large
(infinite) pool of (x, y) pairs and each (x, y), whether training or test, is simply drawn
at random from this pool. We do not know P ∗ (though could, and will, try to estimate
it later). The major assumption is that the training and test examples and labels come
from the same underlying distribution P ∗.

The training error of any classifier h(x) ∈ {−1, 1} is measured, as before, as counting
the number of mistakes on the training set Sn

En(h) =
1

n

n∑
t=1

[[y(t)h(x(t)) ≤ 0]] (1)

The test or generalization error is defined as the expected value

E(h) = E(x,y)∼P ∗ [[yh(x) ≤ 0]] (2)

where you can imagine drawing (x, y) from the large “pool” P ∗ and averaging the results.
Note that the training error will change if we measure it based on another set of n
examples S ′n drawn from P ∗. The generalization error does not vary for any fixed h(x),
however, as this error is measured across the whole pool of examples already. Also note
that the generalization error E(h) is also the probability that h(x) would misclassify a
randomly drawn example from P ∗.

Given a set of classifiers H, we would like to choose h∗ that minimizes the general-
ization error, i.e., E(h∗) = minh∈H E(h). If we had access to E(h), there would be no

1

model selection problem either. We would simply select the largest set H so as to find
a classifier that minimizes the error. But we only have access to ĥ that minimizes the
training error, ĥ ∈ arg minh∈H En(h), and still wish to guarantee that the generalization
error E(ĥ) is low. A large H can hurt us in this setup. The basic intuition is that if
H involves too many choices, we may select ĥ that fits the noise rather than the signal
in the training set. Any characteristics of ĥ that are based on noise will not generalize
well. We must select the appropriate “model” H.

Suppose we have sets of classifiers Hi, i = 1, 2, . . . ,, ordered from simpler to complex.
We assume that these sets are nested in the sense that the more complex ones always
include the simpler ones, i.e., H1 ⊆ H2 ⊆ H3 ⊆ So, for example, if h ∈ H1, then
h ∈ H2 as well. The nested sets ensure, for example, that the training error will go
down if we adopt a more complex set of classifiers. In terms of linear classifiers,

H =

{
h : s.t. h(x) = sign(φ(x) · θ + θ0), for some θ ∈ Rp, θ0 ∈ R

}
, (3)

the sets Hi could correspond to the degree of polynomial features in φ(x). For example,
in two dimensions,

H1 : φ(x) = [x1, x2]
T (4)

H2 : φ(x) = [x1, x2, x
2
1, x

2
2,
√

2x1x2]
T (5)

· · ·

Note that H2 contains the first order features as well as the additional 2nd order ones.
So, any h ∈ H1 has the equivalent classifier in H2 simply by setting the parameters
corresponding to the 2nd order features to zero.

Our goal here is to find the set of classifiers Hi such that, if we choose ĥi ∈ Hi

by minimizing the training error, En(ĥi), we obtain the best guarantee of generalization
error E(ĥi). In other words, we select the model (set of classifiers) for which we can guar-
antee the best generalization error. The remaining problem is to find such generalization
guarantees.

Generalization guarantees

Our goal here is to provide some generalization guarantees for classifiers chosen based
on the training set Sn. We assume, for simplicity, that the training algorithm finds
a classifier ĥ ∈ H that minimizes the training error En(ĥ). What can we say about
the resulting generalization error E(ĥ)? Well, since the training set Sn is a random
draw from P ∗, our trained classifier ĥ also varies according to this random draw. So,
the generalization error E(ĥ) also varies through ĥ. We cannot simply give a absolute
bound on the generalization error. We can only say that with high probability, where
the probability refers to the choice of the training examples in Sn, we find ĥ that would

2

generalize well. After all, we might have been very unlucky with the training set, and
therefore obtain a bad ĥ that generalizes poorly. But we want the procedure to work
most of the time, in all “typical” cases.

More formally, we are looking for PAC (Probably Approximately Correct) guarantees
of the form: With probability at least 1 − δ over the choice of the training set Sn from
P ∗, any classifier ĥ that minimizes the training error En(ĥ) has generalization error
E(ĥ) ≤ ε. Note that the statement is always true if we set ε = 1 (since generalization
error is bounded by one). Moreover, it is easy to satisfy the statement if we increase δ,
i.e., require that good classifiers are found only in response to a small fraction 1− δ of
possible training sets. A key task here is to find the smallest ε for a given δ, n, and H.
In other words, we wish to find the best guarantee of generalization (i.e., ε) that we can
give with confidence 1− δ (fraction of training sets for which the guarantee is true), the
number of training examples n, and the set of classifiers H (in particular, some measure
of the size of this set). In looking for such guarantees, we will start with a simple finite
case.

A finite set of classifiers

Suppose H = {h1, . . . , hK}, i.e., there are at most K distinct classifiers in our set.
We’d like to understand, in particular, how |H| = K relates to ε, the guarantee of
generalization. To make our derivations simpler, we assume, in addition, that there
exists some h∗ ∈ H with zero generalization error, i.e., E(h∗) = 0. This additional
assumption is known as the realizable case: there exists a perfect classifier in our set, we
just don’t know which one.

Our derivation proceeds as follows. We will fix ε, H, and n, and try to obtain the
smallest δ so that the guarantee holds (recall, δ is the probability over the choice of
the training set that our guarantee fails). To this end, let h ∈ H be any classifier that
generalizes poorly, i.e., E(h) > ε. What is the probability that we would consider it
after seeing the training set? It is the probability that this classifier makes no errors on
the training set. This is at most (1 − ε)n since the probability that it makes an error
on any example drawn from P ∗ is at least ε. But there may be many such “offending”
classifiers that have high generalization error (above ε), yet appear good on the training
set (zero training error). Clearly, there cannot be more than |H| of such classifiers.
Taken together, we clearly have that δ ≤ |H|(1− ε)n. So,

log δ ≤ log |H|+ n log(1− ε) ≤ log |H| − nε (6)

where we used the fact that log(1− ε) ≤ −ε. Solving for ε, we get

ε ≤ log |H|+ log(1/δ)

n
(7)

In other words, the generalization error of any classifier ĥ that achieves zero training
error (under our two assumptions) is bounded by the right hand side in the above
expression. Note that

3

• For good generalization (small ε), we must ensure that log |H| is small compared
to n. In other words, the “size” of the set of classifiers cannot be too large. What
matters is the logarithm of the size.

• The more confident we wish to be about our guarantee (the smaller δ is), the more
training examples we need. Clearly, the more training examples we have, the more
confident we will be that a classifier which achieves zero training error will also
generalize well.

The analysis is slightly more complicated if we remove the assumption that there
has to be one perfect classifier in our set. The resulting guarantee is weaker but with
similar qualitative dependence on the relevant quantities: with probability at least 1− δ
over the choice of the training set,

E(ĥ) ≤ En(ĥ) +

√
log |H|+ log(2/δ)

2n
(8)

where ĥ is the classifier that minimizes the training error. In fact, in this case, the
guarantee holds for all ĥ ∈ H, not only for the classifier that we would choose based on
the training set. The result merely shows how many examples we would need in relation
to the size of the set of classifiers so that the generalization error is close to the training
error for all classifiers in our set.

What happens to our analysis if H is not finite? log |H| is infinite, and the results
are meaningless. We must count the size of the set of classifiers differently when there
are continuous parameters as in linear classifiers.

Growth function and the VC-dimension

The set of linear classifiers is an uncountably infinite set. How do we possibly count
them? We will try to understand this set in terms of how classifiers from this set label
training examples. In other words, we can think of creating a matrix where each row
corresponds to a classifier and each column corresponds to a training example. Each
entry of the matrix tells us how a particular classifier labels a specific training example.
Note that there are infinite rows in this matrix and exactly n columns.

x(1) x(2) · · · x(n)

h ∈ H : +1 −1 · · · −1
h′ ∈ H : +1 −1 · · · −1
h′′ ∈ H : +1 +1 · · · −1
· · · · · · · · · · · · · · ·

(9)

Not all the rows in this matrix are distinct. In fact, there can be only at most 2n distinct
rows. But our set of classifiers may not be able to generate all the 2n possible labelings.
Let NH(x(1), . . . , x(n)) be the number of distinct rows in the matrix if we choose classifiers

4

from H. Since this depends on the specific choice of the training examples, we look at
instead the maximum number of labelings (distinct rows) that can be obtained with the
same number of points:

NH(n) = max
x(1),...,x(n)

NH(x(1), . . . , x(n)) (10)

This is known as the growth function and measures how powerful the set of classifiers
is. The relevant measure of the size of the set of classifiers is now logN(n) (again,
the logarithm of the “number”). Indeed, using this as a measure of size already gives
us a generalization guarantee similar to the case of finite number of classifiers: with
probability at least 1− δ over the choice of the training set,

E(ĥ) ≤ En(ĥ) +

√
logNH(2n) + log(4/δ)

n
, for all ĥ ∈ H (11)

The fact that the guarantee uses logNH(2n) rather than logNH(n) comes from a particu-
lar technical argument (symmetrization) used to derive the result. The key question here
is how the new measure of size, i.e., logNH(n), grows relative to n. When NH(n) = 2n,
we have logNH(n) = n log(2) and the guarantee remains vacuous. Indeed, our guarantee
becomes interesting only when logNH(n) grows much slower than n. When does this
happen?

This key question motivates us to define a measure of complexity of a set of classifiers,
the Vapnik-Chervonenkis dimension or VC-dimension for short. It is the largest number
of points for which NH(n) = 2n, i.e., the largest number of points that can be labeled in
all possible ways by choosing classifiers from H. Let dH be the VC-dimension. It turns
out that NH(n) grows much slower after n is larger than the VC-dimension dH. Indeed,
when n > dH,

logNH(2n) ≤ dH(log(2n/dH) + 1) (12)

In other words, the number of labelings grows only logarithmically. As a result, the VC-
dimension dH captures a clear threshold for learning: when we can and cannot guarantee
generalization.

So, what is the VC-dimension of a set of linear classifiers? It is exactly d + 1 (the
number of parameters in d-dimensions). This relation to the number of parameters is
often but not always true. The figure below illustrates that the VC-dimension of the set
of linear classifiers in two dimensions is exactly 3.

5

a)

x x

x

x x

x

x x

x

x x

x

x x

x

x x

x

x x

x

x x

x

+-

+-

+-
+-

+ -

+- + - +-

b)

x

x

x

x

+ -

+-

Figure 1: a) The set of linear classifiers in 2d can label three points in all possible ways;
b) a labeling of four points that cannot be obtained with a linear classifier.

6

