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Bayesian networks: overview

Bayesian networks are generative probability models that were developed for represent-
ing and using probabilistic information. All generative models involve variables. For
example, the choice of mixture component is a variable, the state in an HMM is a vari-
able, and so on. How we select values for these variables is governed by a probability
distribution. For example, mixture models specify a probability distribution over the
selection of the mixture component as well as the (Gaussian) output variable. HMMs
specify a distribution over the sequence of hidden states as well as the corresponding ob-
servation symbols. As generative models, Bayesian networks subsume mixture models,
Hidden Markov Models, and many others. In fact, Bayesian networks provide a simple
language for specifying generative probability models.

There are two parts to any Bayesian network model: 1) directed graph over the
variables and 2) the associated probability distribution. The graph represents quali-
tative information about the random variables (conditional independence properties),
while the associated probability distribution, consistent with such properties, provides
a quantitative description of how the variables relate to each other. If we already have
the distribution, as we have for mixture models or HMMs, why do we need the graph?
The graph structure serves two important functions. First, it explicates the properties
about the underlying distribution that would be otherwise hard to extract from a given
distribution. For example, it tells us whether two sets of variables are independent from
each other, and in which scenarios (known values for some variables). The graph is a
compact summary of such statements. Given that the graph constraints the distribu-
tion, it affects how we can generate data. As a result, the graph structure can be learned
from available data, i.e., we can explicitly learn qualitative properties from data. Sec-
ond, since the graph pertains to independence properties about the random variables,
it is very useful for understanding how we can use the probability models efficiently to
evaluate various marginal and conditional properties. This is exactly why we were able
to carry out efficient computations in HMMs. The forward-backward algorithms relied
on simple Markov properties which are independence properties, and these are general-
ized in Bayesian networks. We can make use of independence properties whenever they
are explicit in the model.
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Bayesian networks: examples, properties

Let’s start with a simple example model over three binary variables. We imagine that
two people are flipping coins independently from each other. The resulting values of
their unbiased coin flips are stored in binary (H/T) variables X1 and X2. Another
person checks whether the coin flips resulted in the same value and the outcome of the
comparison is a binary (T/F) variable X3 = [[X1 = X2 ]] (logical true/false). We will
first construct the distribution, then look at how we should represent it as a graph.

The two coin flips are governed by simple uniform probability distributions. For
example, P (X1 = H) = 0.5 and P (X1 = T ) = 0.5. We can represent these probabilities
as tables

X1 :
H T
0.5 0.5

, X2 :
H T
0.5 0.5

(1)

where each row in the table must sum to one. The value of X3, on the other hand,
depends on (in fact, is a function of) X1 and X2 and cannot be determined until we
know which values X1 and X2 take. We must therefore specify a conditional distribution
P (X3 = x3|X1 = x1, X2 = x2) for this variable. The conditional probability can also be
represented as a table where we introduce a row for each possible setting of X1 and X2.

X3|X1, X2 :

X1, X2 T F
H,H 1 0
H,T 0 1
T,H 0 1
T, T 1 0

(2)

Again, each row of the probability table sums to one. Note that the probability values
are extreme valued (zero and one) because X3 is a function of X1 and X2. So, for
example, P (X3 = T |X1 = H,X2 = H) = 1 while P (X3 = F |X1 = H,X2 = H) = 0, the
first row in the above table. Now, since the two coins are flipped independently of each
other, we can write the joint distribution over the three variables as

P (X1 = x1, X2 = x2, X3 = x3) = P (X1 = x1)P (X2 = x2)P (X3 = x3|X1 = x1, X2 = x2) (3)

In order to represent this as a Bayesian network, we will use a directed graph over the
variables X1, X2, and X3 in addition to the distribution. The nodes in the graph rep-
resent variables while the directed edges specify dependences, i.e., whether one variable
directly depends on another. We know in this example that X1 and X2 do not directly
depend on each other, while X3 depends on both X1 and X2. As a result, the directed
graph for this model is as given by Figure 1.

Typically, we would write down the distribution in response to the graph rather than
the other way around. In fact, how the distribution factors is determined directly by the
graph. We need a bit of terminology for this. In the graph, X1 is a parent of X3 since
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X1 X2

X3

X1 :
H T
0.5 0.5

X2 :
H T
0.5 0.5

X3|X1, X2 :

X1, X2 T F
H, H 1 0
H, T 0 1
T, H 0 1
T, T 1 0

Figure 1: a) A directed graph for the coin toss example with the associated conditional
probability tables

there’s a directed edge from X1 to X3 (the value of X3 depends on X1). Analogously,
we can say that X3 is a child of X1. Now, X2 is also a parent of X3 so that the value
of X3 depends on both X1 and X2. We will discuss later what the graph means more
formally (it captures independence properties). For now, we just note that Bayesian
networks always define acyclic graphs (no directed cycles) and represent how values of
the variables depend on their parents, i.e., how we can generate values for the variables.
Any joint distribution consistent with the graph, i.e., any distribution we could imagine
associating with the graph, has to be able to be written as a product of conditional
probabilities of each variable given its parents. If a variable has no parents (as is the
case with X1) then we just write P (X1 = x1). Eq.(3) is exactly a product of conditional
probabilities of variables given their parents.

Marginal independence and induced dependence

Let’s analyze the properties of the simple model a bit. For example, what is the marginal
probability over X1 and X2? This is obtained from the joint simply by summing over
the values of X3

P (X1 = x1, X2 = x2) =
∑
x3

P (X1 = x1)P (X2 = x2)P (X3 = x3|X1 = x1, X2 = x2)(4)

= P (X1 = x1)P (X2 = x2)
∑
x3

P (X3 = x3|X1 = x1, X2 = x2)(5)

= P (X1 = x1)P (X2 = x2) (6)

Thus X1 and X2 are marginally independent of each other (a product distribution means
that the variables are independent). In other words, if we don’t know the value of
X3 then there’s nothing that ties the coin flips together (they were, after all, flipped
independently in the description). This is also a property we could have extracted
directly from the graph. We will provide shortly a formal way of deriving this type of
independence properties from the graph.
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Another typical property of probabilistic models is induced dependence. Suppose now
that the coins X1 and X2 were flipped independently but we don’t know their outcomes.
All we know that X3 = T , i.e., that the outcomes where identical. What do we know
about X1 and X2 in this case? We know that either X1 = X2 = H or X1 = X2 = T . So
their values are clearly dependent. The dependence was induced by additional knowledge,
in this case observing the value of X3. This is again a property we could have read off
directly from the graph (explained below). Both marginal independence and induced
dependence are typical properties of realistic models.

Explaining away

A

E :
T F

0.01 0.99
B :

T F
0.01 0.99

R :
E T F
T 1 0
F 0 1

E B

R

A|E, B :

E, B T F
T, T 1 0
T, F 1 0
F, T 1 0
F, F 0 1

Figure 2: Alarm example with four variables, E, B, R, and A representing true/false
values of earthquake, burglary, radio report, and alarm, respectively. The corresponding
probability tables are given next to the variables.

Another typical phenomenon that probabilistic models can capture is explaining
away. Consider the following typical example (Pearl 1988) in Figure 2. We have four
variables A, B, E, and R capturing possible causes for why a burglary alarm went off.
All the variables are binary (T/F) and, for example, A = T means that the alarm
went off. In our example here all the observed values are T (property is true). In
general, observations in the graph would be represented by shaded nodes. We assume
that earthquakes (E = T ) and burglaries (B = T ) are equally unlikely events P (E =
1) = P (B = 1) = 0.01. Alarm is likely to go off only if either E = 1 or B = 1
or both. Moreover, either event will trigger the alarm so that P (A = T |E,B) = 1
whenever either E = T or B = T or E = B = T , and P (A = T |E,B) = 0 when
E = B = F . An earthquake (E = T ) is likely to be followed by a radio report (R = T )
where P (R = T |E = T ) = 1, and we assume that the report never occurs unless an
earthquake actually took place: P (R = T |E = F ) = 0. Based on the graph, or based
on how we constructed the distribution, we can write down the joint distribution over

4



all the binary variables as

P (E = e, B = b, A = a,R = r) =

= P (E = e)P (B = b)P (A = a|E = e, B = b)P (R = r|E = e) (7)

Note that it again factors as a product of “variable given its parents”.
What do we believe about the values of the variables if we only observe that the

alarm went off (A = T )? At least one of the potential causes E = T or B = T should
have occurred. However, since both are unlikely to occur by themselves, we are basically
left with either E = T or B = T but (most likely) not both. We therefore have two
alternative or competing explanations for the observation and both explanations are
equally likely. We can evaluate the posterior probability that there was a burglary
P (B = T |A = T ) as follows. Let’s first evaluate the marginal probability over the
variables we are interested in:

P (B = b, A = T ) =

=
∑

e∈{T,F}

∑
r∈{T,F}

P (E = e)P (B = b)P (A = T |E = e, B = b)P (R = r|E = e) (8)

=
∑

e∈{T,F}

P (E = e)P (B = b)P (A = T |E = e, B = b)
∑

r∈{T,F}

P (R = r|E = e) (9)

=
∑

e∈{T,F}

P (E = e)P (B = b)P (A = T |E = e, B = b) (10)

= P (B = b)
∑

e∈{T,F}

P (E = e)P (A = T |E = e, B = b) (11)

Note how the radio report (R) dropped out since it is a variable downstream from E,
and we did not observe its value. It represents an observation we could have made but
didn’t. Such “imagined” possibilities will not affect our calculations. Now,

P (B = T |A = T ) =
P (B = T,A = T )∑

b∈{T,F} P (B = b, A = T )
(12)

and evaluates just slightly above 0.5. Why not exactly 0.5? Because there’s a slight
chance that both B = T and E = T , not just one or the other.

If we now hear, in addition, that there was a radio report about an earthquake,
we believe that E = T because R = T only if E = T . As a result, E = T perfectly
explains the alarm A = T , removing any evidence about B = T . In other words, the
additional observation about the radio report explained away the evidence for B = T .
Thus, P (B = T |A = T,R = T ) = P (B = T ) = 0.01 (prior probability) whereas
P (E = T |A = T,R = T ) = 1.

Note that we have implicitly captured in our calculations here that R and B are
dependent given A = T (induced dependence). If they were not, we would not be able
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to learn anything about the value of B as a result of also observing R = T . Here
the effect is drastic and the variables are strongly dependent. We could have, again,
deduced this dependence from the graph directly. In the next lecture, we will look at
independence a bit more formally.
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