
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.S064 Introduction to Machine Learning

Phase 2: Hidden Markov Models (lectures 15 and 16)

Motivation

In many practical problems, we would like to model pairs of sequences. Consider, for
instance, the task of part-of-speech (POS) tagging. Given a sentence, we would like to
compute the corresponding tag sequence:

Input:“Faith is a fine invention”
Output:“Faith/N is/V a/D fine/A invention/N”

More generally, a sequence labeling problem involves mapping a sequence of observations
x1, x2, . . . , xn into a sequence of tags y1, y2, . . . , yn. In the example above, every word x
is tagged by a single label y. One possible approach for solving this problem would be to
label each word independently. For instance, a classifier could predict a part-of-speech
tag based on the word, its suffix, its position in the sentence, etc. In other words, we
could construct a feature vector on the basis of the observed “context” for the tag, and
use the feature vector in a linear classifier. However, tags in a sequence are dependent on
each other and this classifier would make each tagging decision independently of other
tags. We would like our model to directly incorporate these dependencies. For instance,
in our example sentence, the word ”fine” can be either noun (N), verb (V) or adjective
(A). The label V is not suitable since a tag sequence ”D V” is very unlikely. Today, we
will look at a model – a Hidden Markov Model – that allows us to capture some of these
correlations.

Generative Tagging Model

Assume a finite set of words Σ and a finite set of tags T . Define S to be the set of all
sequence tag pairs (x1, . . . , xn, y1, . . . , yn), xi ∈ Σ and yi ∈ T for i = 1 . . . n. S here
contains sequences of different lengths as well, i.e., n varies as well. A generative tagging
model is a probability distribution p over pairs of sequences:

• p(x1, . . . , xn, y1, . . . , yn) ≥ 0 ∀(x1, . . . , xn, y1, . . . , yn) ∈ S

•
∑

(x1,...,xn,y1,...,yn)∈S p(x1, . . . , xn, y1, . . . , yn) = 1

If we have such a distribution, then we can use it to predict the most likely sequence of
tags y1, . . . , yn for any observed sequence of words x1, . . . , xn, as follows

f(x1, . . . , xn) = argmax
y1,...,yn

p(x1, . . . , xn, y1, . . . , yn) (1)

where we view f as a mapping from word sequences to tags.

1

Three key questions:

• How to specify p(x1, . . . , xn, y1, . . . , yn) with a few number of parameters (degrees
of freedom)

• How to estimate the parameters in this model based on observed sequences of
words (and tags).

• How to predict, i.e., how to find the most likely sequence of tags for any observed
sequence of words: evaluate argmaxy1,...,yn p(x1, . . . , xn, y1, . . . , yn)

1 Model definition

Let X1, . . . , Xn and Y1, . . . , Yn be sequences of random variables of length n. We wish
to specify a joint probability distribution

P (X1 = x1, . . . , Xn = xn, Y1 = y1, . . . , Yn = yn) (2)

where xi ∈ Σ, yi ∈ T . For brevity, we will write it as p(x1, . . . , xn, y1, . . . , yn), i.e.,
treat it as a function of values of the random variables without explicating the variables
themselves. We will define one additional random variable Yn+1, which always takes
the value STOP. Since our model is over variable length sequences, we will use the end
symbol to model when to stop. In other words, if we observe x1, . . . , xn, then clearly the
symbol after y1, . . . , yn, i.e., yn+1, had to be STOP (otherwise we would have continued
generating more symbols).

Now, let’s start by rewriting the distribution a bit according to general rules that
apply to any distribution. The goal is to put the distribution in a form where we can
easily explicate our assumptions. First,

p(x1, . . . , xn, y1, . . . , yn+1) = p(y1, . . . , yn+1)p(x1, . . . , xn|y1, . . . , yn+1) (chain rule)

Then we will use the chain rule repeatedly along the sequence of tags

p(y1, . . . , yn+1) = p(y1)p(y2|y1)p(y3|y1, y2) . . . p(yn+1|y1, . . . , yn) (chain rule)

So far, we have made no assumptions about the distribution at all. Since we don’t expect
tags to have very long dependences along the sequence, we will simply say that the next
tag only depends on the current tag. In other words, we will “drop” the dependence on
tags further back

p(y1, . . . , yn+1) ≈ p(y1)p(y2|y1)p(y3|y2) . . . p(yn+1|yn) (independence assumption)

=
n+1∏
i=1

p(yi|yi−1)

2

Put another way, we assume that the tags form a Markov sequence (future tags are inde-
pendent of the past tags given the current one). Let’s now make additional assumptions
about the observations as well

p(x1, . . . , xn|y1, . . . , yn+1) =
n∏

i=1

p(xi|x1, . . . , xi−1, y1, . . . , yn+1) (chain rule)

≈
n∏

i=1

p(xi|yi) (independence assumption)

In other words, we say that the identity of each word only depends on the corresponding
tags. This is a drastic assumption but still (often) leads to a reasonable tagging model,
and simplifies our calculations. A more formal statement here is that the random vari-
able Xi is conditionally independent of all the other variables in the model given Yi (see
more on conditional independence in the Bayesian networks lectures).

Now, we have a much simpler tagging model

p(x1, . . . , xn, y1, . . . , yn+1) = p(y1)
n+1∏
i=2

p(yi|yi−1)
n∏

i=1

p(xi|yi) (3)

For notational convenience, we also assume a special fixed START symbol y0 = ∗ so
that p(y1) becomes p(y1|y0). As a result, we can write

p(x1, . . . , xn, y1, . . . , yn+1) =
n+1∏
i=1

p(yi|yi−1)
n∏

i=1

p(xi|yi) (4)

Let’s understand this model a bit more carefully by looking at how the pairs of sequences
could be generated from the model. Here’s the recipe

1. Set y0 = ∗ (we always start from the START symbol) and let i = 1.

2. Generate tag yi from the conditional distribution p(yi|yi−1) where yi−1 already has
a value (e.g., y0 = ∗ when i = 1)

3. If yi = STOP, we halt the process and return y1, . . . , yi, x1, . . . , xi−1. Otherwise
we generate xi from the output/emission distribution p(xi|yi)

4. Set i = i+ 1, and return to step 2.

HMM formal definition

The model we have defined is a Hidden Markov Model or HMM for short. An HMM is
defined by a tuple 〈N,Σ, θ〉, where

3

• N is the number of states 1, . . . , N (assume the last state N is the final state, i.e.
what we called “STOP” earlier).

• Σ is the alphabet of output symbols. For example, Σ = {“the”, “dog”}.

• θ = 〈a, b, π〉 consists of three sets of parameters

– Parameter ai,j = p(ynext = j|y = i) for i = 1, . . . , N − 1 and j = 1, . . . , N is

the probability of transitioning from state i to state j:
∑N

k=1 ai,k = 1

– Parameter bj(o) = p(x = o|y = j) for j = 1 . . . N − 1 and o ∈ Σ is the
probability of emitting symbol o from state j:

∑
o∈Σ bj(o) = 1.

– Parameter πi = p(y1 = i) for i = 1 . . . N specifies probability of starting at
state i:

∑N
i=1 πi = 1.

Note that θ is a vector of N +N · (N − 1) + (N − 1) · |Σ| parameters.

Example:

• N = 3. States are {1, 2, 3}

• Alphabet Σ = {the, dog}

• Distribution over initial states: π1 = 1, π2 = π3 = 0.

• Parameters ai,j are

j = 1 j = 2 j = 3
i = 1 0.5 0.5 0
i = 2 0 0.8 0.2

• Parameters bj(o) are

o =the o =dog
i = 1 0.9 0.1
i = 2 0.1 0.9

An HMM specifies a probability for each possible (x, y) pair, where x = (x1, . . . , xn)
is a sequence of symbols drawn from Σ and y = (y1, . . . , yn) is a sequence of states drawn
from the integers 1, . . . , (N − 1).

4

1" 2" 3"
0.5" 0.2"

0.5" 0.8"

Figure 1: Transition graph for the example.

p(x, y|θ) =πy1 · (prob. of choosing y1 as an initial step)

ayn,N · (prob. of transitioning to the final step)
n∏

i=2

ayi−1,yi · (transition probability)

n∏
i=1

byi(xi) (emission probability)

Consider the example: “the/1, dog/2, the/1”. The probability of such sequence is:

π1b1(the)a1,2b2(dog)a2,1b1(the)a2,3 = 0 (5)

Parameter estimation

We will first look at the fully observed case (complete data case), where our training data
contains both xs and ys. We will do maximum likelihood estimation. Consider the exam-
ples: Σ = {e, f, g, h}, N = 3. Observation: (e/1, g/2), (e/1, h/2), (f/1, h/2), (f/1, g/2).
To find the MLE, we will simply look at the counts of events, i.e., the number of tran-
sitions between tags, the number of times we saw an output symbol together with an
specific tag (state). After normalizing the counts to yield valid probability estimates,
we get

ai,j =
count(i, j)

count(i)
(6)

a1,2 =
count(1, 2)

count(1)
=

4

4
= 1, a2,2 =

count(2, 2)

count(2)
=

0

4
= 0, . . . (7)

5

where count(i, j) is the number of times we have (i, j) as two successive states and
count(i) is the number of times state i appears in the sequence. Similarly,

bi(o) =
count(i→ o)

count(i)
(8)

b1(e)
count(1→ e)

count(1)
=

2

4
= 0.5, . . . (9)

where count(i→ o) is the number of times we see that state i emits symbol o. count(i)
was already defined above.

2 Decoding with HMM

Suppose now that we have the HMM parameters θ (see above) and the problem is to
infer the underlying tags y1, . . . , yn corresponding to an observed sequence of words
x1, . . . , xn. In other words, we wish to evaluate

argmax
y1,...,yn

p(x1, . . . , xn, y1, . . . , yn+1) (10)

where

p(x1, . . . , xn, y1, . . . , yn+1) =
n+1∏
i=1

ayi−1,yi

n∏
i=1

byi(xi) (11)

and y0 = ∗, yn+1 = STOP. Note that by defining a fixed starting state, we have
again folded the initial state distribution π into the transition probabilities πi = a∗,i,
i ∈ {1, . . . , N} (where N =STOP).

One possible solution for finding the most likely sequence of tags is to do brute
force enumeration. Consider the example: Σ = {the, dog}, x =“the the the dog”. The
possible state sequences include:

1 1 1 2 STOP (12)

1 1 2 2 STOP (13)

1 2 2 2 STOP (14)

... (15)

But there are |T |n possible sequences in total! Solving the tagging problem by
enumerating the tag sequences will be prohibitively expensive.

6

Viterbi algorithm

The HMM has a simple dependence structure (recall, tags form a Markov sequence,
observations only depend on the underlying tag). We can exploit this structure in a
dynamic programming algorithm.

Input: x = x1, . . . , xn and model parameters θ.
Output: argmaxy1,...,yn+1

p(x1, . . . , xn, y1, . . . , yn+1).

Now, let’s look at a truncated version of the joint probability, focusing on the first k
tags for any k ∈ {1, . . . , n}. In other words, we define

r(y1, . . . , yk) =
k∏

i=1

ayi−1,yi

k∏
i=1

byi(xi) (16)

where yk does not equal STOP. Note that our notation r(y1, . . . , yk) suppresses any
dependence on the observation sequence. This is because we view x1, . . . , xn as given
(fixed). Note that, according to our definition,

p(x1, . . . , xn, y1, . . . , yn+1) =r(y1, . . . , yn) · ayn,yn+1

=r(y1, . . . , yn) · ayn,STOP

Let S(k, v) be the set of tag sequences y1, . . . , yk such that yk = v. In other words,
S(k, v) is a set of all sequences of length k whose last tag is v. The dynamic programming
algorithm will calculate

π(k, v) = max
(y1,...,yk)∈S(k,v)

r(y1, . . . , yk) (17)

recursively in the forward direction. In other words, π(k, v) can be thought as solving the
maximization problem partially, over all the tags y1, . . . , yk−1 with the constraint that we
use tag v for yk. If we have π(k, v), then maxv π(k, v) evaluates maxy1,...,yk r(y1, . . . , yk).
We leave v in the definition of π(k, v) so that we can extend the maximization one step
further as we unravel the model in the forward direction. More formally,

• Base case:

π(0, ∗) = 1 (starting state, no observations)

π(0, v) = 0, if v 6= ∗ (an actual state has observations)

This definition reflects the assumption that y0 = ∗.

• Moving forward recursively: for any k ∈ {1, . . . , n}

π(k, v) = max
u∈T
{π(k − 1, u) · au,v · bv(xk)} (18)

7

In other words, when extending π(k − 1, u), u ∈ T , to π(k, v), v ∈ T , we must
transition from yk−1 = u to yk = v (part au,v) and generate the corresponding
observation xk (part bv(xk)). Then we maximize over the previous tag yk−1 = u
so that π(k, v) only depends on the value of yk.

Finally, we must transition from yn to STOP so that

max
y1,...,yn

p(x1, . . . , xn, y1, . . . , yn, yn+1 = STOP) = max
v∈T
{π(n, v) · av,STOP} (19)

The whole calculation can be done in time O(n|T |2), linear in length, quadratic in the
number of tags.

Now, having values π(k, v), how do we reconstruct the most likely sequence of tags
which we denote as ŷ1, . . . , ŷn? We can do this via back-tracking. In other words, at the
last step, π(n, v) represents maximizations of all y1, . . . , yn such that yn = v. What is
the best value for this last tag v, i.e., what is ŷn? It is

ŷn = argmax
v

{
π(n, v)a

v,STOP

}
(20)

Now we can fix ŷn and work backwards. What is the best value ŷn−1 such that we end
up with tag ŷn in position n? It is simply

ŷn−1 = argmax
u
{π(n− 1, u)au,ŷn} (21)

and so on.

3 Hidden Variable Problem

When we no longer have the tags, we must resort to other ways of estimating the HMMs.
It is not trivial to construct a model that agrees with the observations except in very
simple scenarios. Here is one:

• We have an HMM with N = 3,Σ = {a, b, c}

• We see the following output sequences in training data: (a, b), (a, c), (a, b).

How would you choose the parameter values for πi, ai,j and bi(o)? A reasonable choice
is:

π1 = 1.0, π2 = π3 = 0 (22)

b1(a) = 1.0, b1(b) = b1(c) = 0 (23)

b2(a) = 0, b2(b) = b2(c) = 0.5 (24)

a1,2 = 1.0, a1,1 = a1,3 = 0 (25)

a2,3 = 1.0, a2,1 = a2,2 = 0 (26)

8

Expectation-Maximization (EM) for HMM

Suppose now that we have multiple observed sequences of outputs (no observed tags).
We will denote these sequences with superscripts, i.e., x1, x2, . . . , xm. In the context
of each sequence, we must evaluate a posterior probability over possible tag sequences.
For estimation, we only need expected counts that are used in the re-estimation step
(M-step). To this end, let count(xi, y, p→ q) be the numbers of times a transition from
state p to state q occurs in a tag sequence y corresponding to observation xi. We will
only show here the derivations for transition probabilities; the equations for emission
and initial state parameters are obtained analogously.

E-step: calculate expected counts, added across sequences

count(u→ v) =
m∑
i=1

∑
y

p(y|xi, θt−1)count(xi, y, u→ v) (27)

M-step: re-estimate transition probabilities based on the expected counts

au,v =
count(u→ v)∑N
k=1 count(u→ k)

(28)

where the denominator ensures that
∑N

k=1 au,k = 1.

The main problem in running the EM algorithm is calculating the sum over the
possible tag sequences in the E-step.∑

y

p(y|xi, θt−1)count(xi, y, u→ v) (29)

The sum is over an exponential number of possible hidden state sequences y. Next
we will discuss a dynamic programming algorithm – forward-backward algorithm. The
algorithm is analogous to the Viterbi algorithm for maximizing over the hidden states.

The Forward-Backward Algorithm for HMMs

Suppose we could efficiently calculate marginal posterior probabilities

p(yj = p, yj+1 = q|x, θ) =
∑

y:yj=p,yj+1=q

p(y|x, θ) (30)

for any p ∈ 1 . . . (N − 1), q ∈ 1 . . . N, j ∈ 1 . . . n. These are the posterior probabilities
that the state in position j was p and we transitioned into q at the next step. The prob-
ability is conditioned on the observed sequence x and the current setting of the model

9

parameters θ. Now, under this assumption, we could rewrite the difficulty computation
in Eq. 29 as:∑

y

p(y|xi, θt−1)count(xi, y, p→ q) =
n∑

j=1

p(yj = p, yj+1 = q|xi, θt−1) (31)

The key remaining question is how to calculate these posterior marginals effectively. In
other words, our goal is to evaluate p(yj = p, yj+1 = q|xi, θt−1).

Now, consider a single observation sequence x1, . . . , xn. We will make use of the
following forward probabilities:

αp(j) = p(x1, . . . , xj−1, yj = p|θ) (32)

for all j ∈ 1 . . . n, for all p ∈ 1 . . . N − 1. αp(j) is the probability of emitting the
symbols x1, . . . , xj−1 and ending in state p in position j without (yet) emitting the
corresponding output symbol. These are analogous to the π(k, v) probabilities in the
Viterbi algorithm with the exception that π(k, v) included generating the corresponding
observation in position k. Note that, unlike before, we are summing over all the possible
sequences of states that could give rise to the observations x1, . . . , xj−1. In the Viterbi
algorithm, we maximized over the tag sequences.

Similarly to the forward probabilities, we can define the backward probabilities:

βp(j) = p(xj, . . . , xn|yj = p, θ) (33)

for all j ∈ 1 . . . n, for all p ∈ 1 . . . N − 1. βp(j) is the probability of emitting symbols
xj, . . . , xn and transitioning into the final (STOP) state, given that we begun in state
p in position j. Again, this definition involves summing over all the tag sequences that
could have generated the observations from xj onwards, provided that the tag at j is p.

Why are these two definitions useful? Suppose we had been able to evaluate α and β
probabilities effectively. Then the marginal probability we were after could be calculated
as:

p(yj = p, yj+1 = q|x, θ) =
1

Z
αp(j)ap,qbp(oj)βq(j + 1)

Z = p(x1, . . . , xn|θ) =
∑
p

αp(j)βp(j) for any j = 1 . . . n

This is just the sum over all possible tag sequences that include the transition yj = p
and yj+1 = q and generates the observations, divided by the sum over all tag sequences
that generate the observations. As a result, we obtain the relative probability of the
transition, relative to all the alternatives given the observations, i.e., the posterior prob-
ability. Note that αp(j) involves all the summations over tags y1, . . . , yj−1, and βq(j+1)
involves all the summations over the tags yj+2, . . . , yn.

Let’s finally discuss how we can calculate α and β.
As Fig. 2 shows, for every state sequence y1, y2, . . . , yn there is

10

p=1"

p=2"

p=3"

p=4"

!"

!"

!"

!"

!"

!"

!"

!"

!"

!"

!"

!"

!"

!"……"
S"

(1,1)"

(1,2)"

(1,3)"

(1,4)"

(2,1)"

(2,2)"

(2,3)"

(2,4)"

j=1" j=2" j=n"

π p a p,q bp(x j)
a p,N bp(xn)

Figure 2: A path associated with state sequence.

• a path through graph that has the sequence of states s, 〈1, y1〉, . . . , 〈n, yn〉, f .

• The path associated with state sequence y1, . . . , yn has weight equal to p(x, y|θ).

• αp(j) is the sum of weights at all paths from s to the state (j, p).

• βp(j) is the sum of weights at all paths from state 〈j, p〉 to the final state f .

Given an input sequence x1, . . . , xn, for any p ∈ 1 . . . N, j ∈ 1 . . . n, the forward and
backward probability can be calculated recursively.

Forward probability:

αp(j) = p(x1, . . . , xj−1, yj = p|θ) (34)

• Base case:

αp(1) = πp ∀p ∈ 1 . . . N − 1 (35)

• Recursive case

αp(j + 1) =
∑
q

αq(j)aq,pbq(xj) ∀p ∈ 1 . . . N − 1, j = 1 . . . n− 1 (36)

Backward probability:

βp(j) = p(xj, . . . , xn|yj = p, θ) (37)

11

• Base case:

βp(n) = ap,Nbp(xn) ∀p ∈ 1 . . . N − 1 (38)

• Recursive case

βp(j) =
∑
q

ap,qbp(xj)βq(j + 1) ∀p ∈ 1 . . . N − 1, j = 1 . . . n− 1 (39)

12

	Model definition
	Decoding with HMM
	Hidden Variable Problem

