
6.S064 Spring 2013
Introduction to Machine Learning

(slides without jokes...)

Thursday, May 16, 13



http://web.mit.edu/subjectevaluation/

6.S064 Spring 2013
Introduction to Machine Learning

Thursday, May 16, 13

http://web.mit.edu/subjectevaluation/
http://web.mit.edu/subjectevaluation/


What do you need to know?
• Discriminative models and methods

- linear classifiers, perceptron, max-margin hyperplane
- non-linear classifiers, feature mappings, kernels 
- linear/non-linear regression

• Concepts
- regularization, model selection, generalization

• Generative models and methods
- mixture models, the EM-algorithm
- hidden markov models 
- bayesian networks 

• Decisions and actions 
- reinforcement learning
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Mixture models: the EM algorithm
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What do you need to know?
• Discriminative models and methods

- linear classifiers, perceptron, max-margin hyperplane
- non-linear classifiers, feature mappings, kernels 
- linear/non-linear regression

• Concepts
- regularization, model selection, generalization

• Generative models and methods
- mixture models, the EM-algorithm
- hidden markov models 
- bayesian networks 

• Decisions and actions 
- reinforcement learning
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HMM example
1 2

P(x=1)
P(x=2)
P(x=3)

0

s 1 2
0

0.8
P(x=4)

0.1
0.199

0.001

.01

1.990.2
0.7

Figure 2: A two-state HMM for Problem 2

1 2 3 4

.5

.5

.5 .5 .5

.5

.5
.01

.49

Figure 3: An alternative, four-state HMM for Problem 2

Problem 2

Figure 2 shows a two-state HMM. The transition probabilities of the Markov chain are
given in the transition diagram. The output distribution corresponding to each state is
defined over {1, 2, 3, 4} and is given in the table next to the diagram. The HMM is equally
likely to start from either of the two states.

1. (3 points) Give an example of an output sequence of length 2 which
can not be generated by the HMM in Figure 2.

1,2

2. (2 points) We generated a sequence of 6, 8672002 observations from the
HMM, and found that the last observation in the sequence was 3. What
is the most likely hidden state corresponding to that last observation?

2

3. (2 points) Consider an output sequence 3 3. What is the most likely
sequence of hidden states corresponding to these observations?

1,1

4. (2 points) Now, consider an output sequence 3 3 4. What are the first

two states of the most likely hidden state sequence?
2,2

3

P (x|y)

X
Y 1 2 3 4
1 0 0.199 0.8 0.001
2 0.1 0 0.7 0.2

P (yi|yi�1) P (y1)

Y1

1 2
0.5 0.5
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HMM example
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HMM example

• Suppose we observe {3,3}. What is the most likely 
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Figure 2 shows a two-state HMM. The transition probabilities of the Markov chain are
given in the transition diagram. The output distribution corresponding to each state is
defined over {1, 2, 3, 4} and is given in the table next to the diagram. The HMM is equally
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HMM example

• Suppose we observe {3,3}. What is the most likely 
hidden state sequence?

• Suppose we observe {3,3,4}. What is the most likely 
hidden state sequence?
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Problem 2

Figure 2 shows a two-state HMM. The transition probabilities of the Markov chain are
given in the transition diagram. The output distribution corresponding to each state is
defined over {1, 2, 3, 4} and is given in the table next to the diagram. The HMM is equally
likely to start from either of the two states.

1. (3 points) Give an example of an output sequence of length 2 which
can not be generated by the HMM in Figure 2.

1,2

2. (2 points) We generated a sequence of 6, 8672002 observations from the
HMM, and found that the last observation in the sequence was 3. What
is the most likely hidden state corresponding to that last observation?

2

3. (2 points) Consider an output sequence 3 3. What is the most likely
sequence of hidden states corresponding to these observations?

1,1

4. (2 points) Now, consider an output sequence 3 3 4. What are the first

two states of the most likely hidden state sequence?
2,2
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What do you need to know?
• Discriminative models and methods

- linear classifiers, perceptron, max-margin hyperplane
- non-linear classifiers, feature mappings, kernels 
- linear/non-linear regression

• Concepts
- regularization, model selection, generalization

• Generative models and methods
- mixture models, the EM-algorithm
- hidden markov models 
- bayesian networks 

• Decisions and actions 
- reinforcement learning
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Bayesian network example
X1 X2

X3 X4

X5

Xi 2 {0, 1}
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Bayesian network example

• How does the joint distribution factor over these 
variables? 

X1 X2

X3 X4

X5

Xi 2 {0, 1}
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Bayesian network example

• How does the joint distribution factor over these 
variables?

• How many parameters are needed to specify the joint 
distribution? 

X1 X2

X3 X4

X5

Xi 2 {0, 1}
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Bayesian network example

• Which of the following statements hold for the variables 
in the graph (without any additional assumptions)? 

X1 X2

X3 X4

X5

Xi 2 {0, 1}

( ) X1 independent of X2

( ) X3 independent of X4 given X1

( ) knowing X3 doesn’t help predict X2

( ) if we know X4, knowing X3 doesn’t help predict X2
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Follow up courses
• 6.047 Computational Biology: Genomes, Networks, 

Evolution (U,G)

• 6.804J Computational Cognitive Science (U,G)

• 6.802 Computational Systems Biology (U,G)

• 6.867 Machine learning (G)

• 6.438 Algorithms for Inference (G)

• 6.864 Advanced Natural Language Processing (G)

• 6.869 Advances in Computer Vision (G)

• 9.520 Statistical Learning Theory and Applications (G)

• 6.???? Planning algorithms

• etc.
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Follow up courses
• 6.047 Computational Biology: Genomes, Networks, 

Evolution (U,G)
- Covers the algorithmic and machine learning foundations of 

computational biology, combining theory with practice. 
Principles of algorithm design, influential problems and 
techniques, and analysis of large-scale biological datasets. 
Topics include (a) genomes: sequence analysis, gene finding, 
RNA folding, genome alignment and assembly, database 
search; (b) networks: gene expression analysis, regulatory 
motifs, biological network analysis; (c) evolution: comparative 
genomics, phylogenetics, genome duplication, genome 
rearrangements, evolutionary theory. These are coupled with 
fundamental algorithmic techniques including: dynamic 
programming, hashing, Gibbs sampling, expectation 
maximization, hidden Markov models, stochastic context-free 
grammars, graph clustering, dimensionality reduction, Bayesian 
networks.
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Follow up courses
• 6.804J Computational Cognitive Science (U,G)

- Introduction to computational theories of human cognition. 
Focus on principles of inductive learning and inference, and 
the representation of knowledge. Computational frameworks 
covered include Bayesian and hierarchical Bayesian models; 
probabilistic graphical models; nonparametric statistical 
models and the Bayesian Occam's razor; sampling algorithms 
for approximate learning and inference; and probabilistic 
models defined over structured representations such as first-
order logic, grammars, or relational schemas. Applications to 
understanding core aspects of cognition, such as concept 
learning and categorization, causal reasoning, theory 
formation, language acquisition, and social inference. Graduate 
students complete a final project.
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Follow up courses
• 6.802 Computational Systems Biology (U,G)

- Presents computational approaches and algorithms for 
contemporary problems in systems biology, with a focus on 
models of biological systems, including regulatory network 
discovery and validation. Topics include genotypes, regulatory 
factor binding and motif discovery, and whole genome RNA 
expression; regulatory networks (discovery, validation, data 
integration, protein-protein interactions, signaling, whole 
genome chromatin immunoprecipitation analysis); and 
experimental design (model validation, interpretation of 
interventions). Discusses computational methods, including 
directed and undirected graphical models, such as Bayesian 
networks, factor graphs, Dirichlet processes, and topic 
models. Multidisciplinary team-oriented final research 
project. Students taking graduate version complete additional 
assignments.
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Follow up courses
• 6.867 Machine learning (G)

- Principles, techniques, and algorithms in machine learning 
from the point of view of statistical inference; representation, 
generalization, and model selection; and methods such as 
linear/additive models, active learning, boosting, support 
vector machines, hidden Markov models, and Bayesian 
networks.
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Follow up courses
• 6.438 Algorithms for Inference (G)

- Introduction to statistical inference with probabilistic 
graphical models. Covers directed and undirected graphical 
models, factor graphs, and Gaussian models; hidden Markov 
models, linear dynamical systems.; sum-product and junction 
tree algorithms; forward-backward algorithm, Kalman 
filtering and smoothing; and min-sum algorithm and Viterbi 
algorithm. Presents variational methods, mean-field theory, 
and loopy belief propagation; and particle methods and 
filtering. Includes building graphical models from data; 
parameter estimation, Baum-Welch algorithm; structure 
learning; and selected special topics.
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Follow up courses
• 6.864 Advanced Natural Language Processing (G)

- Graduate introduction to natural language processing, the 
study of human language from a computational perspective. 
Syntactic, semantic and discourse processing models. 
Emphasis on machine learning or corpus-based methods and 
algorithms. Use of these methods and models in applications 
including syntactic parsing, information extraction, statistical 
machine translation, dialogue systems, and summarization.
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Follow up courses
• 6.869 Advances in Computer Vision (G)

- Advanced topics in computer vision with a focus on the use 
of machine learning techniques and applications in graphics 
and human-computer interface. Topics include image 
representations, texture models, structure-from-motion 
algorithms, Bayesian techniques, object and scene 
recognition, tracking, shape modeling, and image databases. 
Applications may include face recognition, multimodal 
interaction, interactive systems, cinematic special effects, and 
photorealistic rendering. Covers topics complementary to 
6.801/6.866; these subjects may be taken in sequence.
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Follow up courses
• 9.520 Statistical Learning Theory and Applications (G)

- Focuses on the problem of supervised and unsupervised 
learning from the perspective of modern statistical learning 
theory, starting with the theory of multivariate function 
approximation from sparse data. Develops basic tools such as 
regularization, including support vector machines for 
regression and classification. Derives generalization bounds 
using stability. Discusses current research topics such as 
manifold regularization, sparsity, feature selection, bayesian 
connections and techniques. Discusses applications in areas 
such as computer vision, speech recognition, and 
bioinformatics. Also covers advances in the neuroscience of 
the cortex and their impact on learning theory and 
applications. Includes a final project.
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Follow up courses
• 6.???? Planning algorithms

- Introduction to algorithms for planning action sequences with 
applications in artificial intelligence, robotics and computer 
games.  The course covers a broad spectrum of 
representations and algorithms from ( a ) symbolic planning, 
( b ) robot motion planning and ( c ) probabilistic planning . 
Topics include: state-space search, heuristics, STRIPS planning, 
configuration-space representation, sampling-based motion 
planning, decision theory, Markov decision processes and 
partially observable Markov decision processes. 

Thursday, May 16, 13



Follow up courses
• 6.047 Computational Biology: Genomes, Networks, 

Evolution (U,G)

• 6.804J Computational Cognitive Science (U,G)

• 6.802 Computational Systems Biology (U,G)

• 6.867 Machine learning (G)

• 6.438 Algorithms for Inference (G)

• 6.864 Advanced Natural Language Processing (G)

• 6.869 Advances in Computer Vision (G)

• 9.520 Statistical Learning Theory and Applications (G)

• 6.???? Planning algorithms

• etc.
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The end
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