
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.S064 Introduction to Machine Learning

Phase 4: Bayesian networks (lecture 19)

Bayesian networks: graph and independence

We have already emphasized that the graph structure in Bayesian networks represents
useful qualitative properties about the variables. Specifically, the graph encodes in-
dependence statements about how the variables relate to each other. We will need a
criterion for reading such independence properties from the graph without consulting
the underlying probability distribution. The subtlety here is that we cannot just pick
any criterion we like. The probability distribution we will associate with the graph must
be consistent with all the properties we can derive from the graph. Otherwise the graph
would “lie” and wouldn’t be useful to us.

We had previously introduced the graph as specifying the parents of each node
i = 1, . . . , d. In the graph, we call nodes j which start directed edges or arcs to node i as
parents of i. Formally, we say that j ∈ pai. The choice of these parents, i.e., the choice
of parent sets pai, is unconstrained except for the fact that we cannot introduce directed
cycles. In other words, the graph must be an acyclic directed graph (DAG). In terms of
variables X1, . . . , Xd, we motivated the graph as specifying which other variables each Xi

directly depends on, i.e., variables whose values we would have to know prior to drawing
a value for Xi. We write the set of parents as variables using notation Xpai = {Xj}j∈pai .
Once we know the parents, we can write (factor) the probability distribution over all
the variables as

P (X1 = x1, . . . , Xd = xd) =
d∏

i=1

P (Xi = xi|Xpai = xpai) (1)

where, for some nodes, pai = {} (the empty set) and P (Xi = xi|Xpai = xpai) reduces to
P (Xi = xi) (no other variable need to be consulted prior to sampling a value for Xi).
You should convince yourself that any directed acyclic graph must have at least one
node without any parents.

The above factorization resembles an application of the chain rule. First, we write
the variables in some order such that the parents of each variable always come before
the variable itself in the ordering. This is always possible for a directed acyclic graph
(in fact, there are often a large number of such “consistent” orderings). Then we simply
“drop” dependences in the conditional probabilities to get the above factorization. These
simplifications represent independence assumptions about the variables. To simplify the
notation, let’s assume that the simple lexicographic ordering works for our graph. In

1

other words, assume that pai ⊆ {1, . . . , i−1}, i = 1, . . . , d. Then, by applying the chain
rule, we could always write (without any assumptions)

P (X1 = x1, . . . , Xd = xd) =
d∏

i=1

P (Xi = xi|Xi−1 = xi−1, . . . , X1 = x1) (2)

When we construct the distribution for a particular graph, we are assuming that

P (Xi = xi|Xi−1 = xi−1, . . . , X1 = x1) = P (Xi = xi|Xpai = xpai) (3)

where pai ⊆ {1, . . . , i − 1}. This is an independence assumption. Specifically, define
npai = {1, . . . , i − 1} \ pai as the “preceding non-parents”. By factoring the joint
distribution according to Eq.(1), i.e., dropping dependences except for the parents, we
make the assumption that Xi is independent of Xnpai given values for the parents Xpai .
These independence statements, one statement per variable, would suffice to specify
the directed graph (dropping all arcs from preceding non-parents). But there are many
other independence statements that are implied by these. How do we read all of these
off the graph directly?

Independence from the graph: D-separation

As an example, consider a slightly extended version of the alarm model we had discussed
before. The model is given in Figure 1a, with an additional binary variable L. This
could be whether we “leave work” as a result of hearing/learning about the alarm. We
will now define a procedure for answering questions such as: are R and B independent
of each other? Are R and B independent of each other if we know (given) A? And so
on.

The general procedure involves three simple steps that we will motive and illustrate
in relation to the graph in Figure 1a.

1. First we only keep the ancestral graph of the variables of interest. The ancestral
graph includes all the variables of interest as well as every other variable we can get
to by traversing in the reverse direction of the arrows (parents, parents’ parents,
and so on). Why do we want this graph? Common ancestors are variables that
might correlate our variables of interest (loosely speaking, you can think of them
as common underlying causes). We need to know whether such variables exist.
In contrast, it is unnecessary to look at variables downstream (these represent
properties we could but did not measure).

The variables we care about here are R, B, and A. The ancestral graph includes
these variables as well as all the variables (ancestors) you can get to by starting
from one of these variables and following the arrows in the reverse direction (their
parents, their parents’ parents, and so on). The ancestral graph in our case is
given in Figure 1b.

2

2. Moralize the resulting ancestral graph. This operation simply adds an undirected
edge between any two variables in the ancestral graph that have a common child
(“moralization” = “marry the parents”). In case of multiple parents, they are
connected pairwise, i.e., by adding an edge between any two parents. See Figure 1c.
Moralization is needed to take into account induced dependences discussed earlier
(observed effects of multiple causes). You wouldn’t actually need to moralize the
whole ancestral graph. It would suffice to do so for the parents of the conditioning
variables (in this case A).

3. Once we have completed the above two steps, we are nearly done. We can now
read off the independence property from the graph. If all the paths between R
and B go via A then R and B are independent given A (this is NOT true in our
graph). So R and B are dependent given A (recall induced dependence). Note
that, after moralization, we no longer pay attention to the direction of the arcs.
For clarity, you could change all the direct edges into undirected edges at this
point. This would give the resulting undirected graph in Figure 1d from which you
can read the answer.

Let’s go back to the previous examples to make sure we can read off the properties
we claimed from the graphs. For example, if we are interested in asking whether X1

and X2 are marginally independent (i.e., given nothing) in the model in Figure ??, we
would create the graph transformations shown in Figure 2. Similarly, to establish that
X1 and X2 become dependent with the observation of X3, we would ask whether X1

and X2 are independent given X3 and get the transformations in Figure 3. The nodes
are not separated by X3 and therefore not independent.

Learning Bayesian networks

There are two problems we have to solve in order to estimate Bayesian networks from
available data. We have to estimate the parameters given a specific graph structure,
and we have to search over possible structures (model selection).

Suppose now that we have d discrete variables, X1, . . . , Xn, where Xi ∈ {1, . . . , ri},
and n complete observations D = {(x(t)1 , . . . , x

(t)
d), t = 1, . . . , n}. In other words, each

observation contains a value assignment to all the variables in our model. This is a
simplification and models in practice (e.g., mixture models, HMMs) are intended to be
estimated from incomplete data. We will also assume that the conditional probabilities
we need to specify for a Bayesian network are fully parameterized. This means, e.g., that
in P (X1 = x1|X2 = x2) we can select the probability distribution over X1 separately
(without additional constraints) for each possible value of the parent x2. Models used
in practice often have parametric constraints so that, for example, “similar” values of
X2 would lead to “similar” distributions over X1. In our case here, the model interprets
the value of each variable just as a symbol without any such constraints.

3

a)

���
���
���
���
���

���
���
���
���
���

L = “leave work”

E=“earthquake”

R = “radio report” A=“alarm”

B = “burglary”

b)
���
���
���
���
���

���
���
���
���
���

B = “burglary”E=“earthquake”

R = “radio report” A=“alarm”

c)
���
���
���
���
���

���
���
���
���
���

B = “burglary”E=“earthquake”

R = “radio report” A=“alarm” d)
���
���
���
���
���

���
���
���
���
���

B = “burglary”E=“earthquake”

R = “radio report” A=“alarm”

Figure 1: a) Burglary model, extended, b) ancestral graph of R, B, and A, c) moralized
ancestral graph, d) resulting undirected graph.

a) x3

x1 x2

b)

x1 x2

Figure 2: a) Bayesian network model, b) ancestral graph of x1 and x2, already moralized
and undirected.

Given an acyclic graph G over d variables, we already know that we can write down
the associated joint distribution as

P (X1 = x1, . . . , Xd = xd) =
n∏

i=1

P (Xi = xi|Xpai = xpai) =
n∏

i=1

θi(xi|xpai) (4)

where θi(xi|xpai) are the probability tables that we must estimate. For example, if
X3 ∈ {1, . . . , r3} has two parents, X1 and X2, each taking values in {1, . . . , r1} and

4

a)
���
���
���
���
���

���
���
���
���
���

x3

x1 x2

b)
���
���
���
���
���

���
���
���
���
���

x3

x1 x2

c)
���
���
���
���
���

���
���
���
���
���

x3

x1 x2

d)
���
���
���
���
���

���
���
���
���
���

x3

x1 x2

Figure 3: a) Bayesian network model, b) ancestral graph of x1 and x2 given x3, c)
moralized ancestral graph, d) resulting undirected graph.

{1, . . . , r2}, respectively, then the table θ3(x3|x1, x2) is given by

X3|X1, X2 :

X1, X2 1, . . . , r3
1, 1 θ3(1|1, 1), . . . θ3(r3|1, 1)
2, 1 θ3(1|2, 1), . . . θ3(r3|2, 1)
· · · · · · , . . . · · ·
r1, 1 θ3(1|r1, 1), . . . θ3(r3|r1, 1)
r1, 2 θ3(1|r1, 2), . . . θ3(r3|r1, 2)
· · · · · · , . . . · · ·
r1, r2 θ3(1|r1, r2), . . . θ3(r3|r1, r2)

(5)

Each row of the table sums to one since
∑r3

x3=1 θ3(x3|x1, x2) = 1 for any setting of x1
and x2. There are exactly r1r2(r3 − 1) parameters in this table that can be chosen
independently (the sum to one constraint removes one from each row).

Maximum likelihood parameter estimation

We can now write down the log-likelihood of observed data D = {(x(t)1 , . . . , x
(t)
d), t =

1, . . . , n} for any particular Bayesian network structure, i.e., for any particular graph G.
It is given by

l(D; θ,G) =
n∑

t=1

log

[
d∏

i=1

θi(x
(t)
i |x(t)pai

)

]
=

n∑

t=1

d∑

i=1

log θi(x
(t)
i |x(t)pai

) =
d∑

i=1

[
n∑

t=1

log θi(x
(t)
i |x(t)pai

)

]

(6)

where we grouped the terms by variable (given their parents) in order to highlight the
fact that the associated parameters can be set separately from those pertaining to other
variables. The maximum likelihood estimation of the model parameters then reduces to
the problem of estimating individual tables such as the one in Eq.(5).

5

The table θi(xi|xpai) specifies a multinomial distribution over xi for each setting of
the parent variables xpai . As a result, we can maximize the likelihood analogously to
estimating multinomial parameters we have seen before. Indeed,

n∑

t=1

log θi(x
(t)
i |x(t)pai

) =
∑

xi,xpai

ni,pai(xi, xpai) log θi(xi|xpai) (7)

where ni,pai(xi, xpai) gives the number of observations in data D for which Xi = xi and
Xpai = xpai . So, if we fix xpai , then ni,pai(·, xpai) specifies the counts for a multino-
mial θi(·|xpai). The corresponding maximum likelihood parameter estimate is simply
(analogously to a single multinomial)

θ̂i(xi|xpai) =
ni,pai(xi, xpai)∑
x′
i
ni,pai(x

′
i, xpai)

, xi ∈ {1, . . . , r1} (8)

Repeating the procedure for each setting of xpai , and for different variables, yields the

maximum likelihood parameter estimates θ̂i(xi|xpai), i = 1, . . . , d.

Learning the graph structure

Given the ML parameter estimates θ̂i(xi|xpai) shown above, we can evaluate the resulting

maximum value of the log-likelihood l(D; θ̂, G). Note that this value depends on the
graph G (which specifies the conditional probability tables we can use) as well as on
the data. As with other models we have seen (e.g., mixture models), we cannot use this
log-likelihood value alone for deciding which model (graph) is the best one. We must
use a model selection criterion to decide between the graphs.

Consider a simple case of just two variables X1 and X2. We can evaluate the log-
likelihood of the data D for three different graphs, 1) G0 where X1 and X2 are inde-
pendent, 2) G1 where X1 is a parent of X2, and 3) G2 where X2 is a parent of X1. The
graphs G1 and G2 are equivalent in the sense that they make the same set of indepen-
dence assumptions about the variables, i.e., none. They would therefore always result
in the same value of log-likelihood, and we cannot distinguish between them. However,
the problem is that G0 would almost always result in a lower log-likelihood value than
G1 or G2, regardless of whether X1 and X2 were independent. Why is that? Let’s say
we are choosing between G0 and G1. For each observation in D, we predict values for
X1 in the same way, using a table θ1(x1) since X1 has no parents in either graph. But
they differ in how observed values of X2 are predicted. Specifically,

G0 : l(D; θ,G0) =
n∑

t=1

log θ1(x
(t)
1) +

n∑

t=1

log θ2(x
(t)
2) (9)

G1 : l(D; θ,G1) =
n∑

t=1

log θ1(x
(t)
1) +

n∑

t=1

log θ2(x
(t)
2 |x(t)1) (10)

6

For G1, we could always choose θ2(x2|x1) such that it takes the same value regardless
of x1. This would correspond to having only θ2(x2). In other words, G0 is “contained”
in G1. But this is hardly optimal for G1 in terms of the log-likelihood. As a result,
l(D; θ̂, G1) ≥ l(D; θ̂, G0) since G1 has more parameters (more degrees of freedom to fit
to the data) and we would never select G0, whether it is correct or not.

To remedy the situation, and appropriately compare two different Bayesian networks,
we must use a model selection criterion such as the Bayesian Information Criterion

BIC(D; θ̂, G) = l(D; θ̂, G)− dim(G)

2
log(n) (11)

where dim(G) specifies the number of (independent) parameters in the model. In our
case this is given by

dim(G) =
d∑

i=1

(ri − 1)
∏

j∈pai

rj (12)

where each term in the sum corresponds to the size of the probability table θi(xi|xpai)
minus the number of associated normalization constraints. We can now search for the
graph G that maximizes BIC(D; θ̂, G) similarly to selecting the number of mixture
components.

We can write the criterion in a bit more convenient form. Note that both the log-
likelihood value and the BIC penalty term decompose according to the variables. In
other words, we can define

score(i|pai;D) =
n∑

t=1

log θ̂i(x
(t)
i |x(t)pai

)− 1

2

[
(ri − 1)

∏

j∈pai

rj

]
log(n) (13)

as the BIC score for selecting parents pai for node i so that

BIC(D; θ̂, G) =
d∑

i=1

score(i|pai;D) (14)

While we can pre-compute the scores score(i|pai;D) for each node and each possible
choice of parents, the main difficulty is that the graph has to be acyclic. Indeed, max-
imizing the overall BIC score with respect to the graph (the choice of parents for each
node) is provably hard for this reason, even if we limit the number of parents that
each variable can take to be just two. A number of algorithms are available, however,
from local search (changing individual edges to maximize the BIC score) to exact dy-
namic programming algorithms (which scale exponentially in the number of variables
but remain feasible up to 25-30 variables).

Figure 4 characterizes the structure learning steps.

7

themselves transcriptionally regulated. These
regulation mechanisms often involve feed-
forward loops and feedback mechanisms
(18, 31) that change the mRNA expression

level of regulators when their protein activ-
ity changes. As a consequence, we can
detect coordinated changes in the expres-
sion levels of regulators and their targets.

This hypothesis is supported by an analysis
of the discovered regulatory relations against
a database of protein-DNA and protein-
protein interactions (26).

Fig. 3. Different regulatory network architectures. (A) An uncon-
strained acyclic network where each gene can have a different regu-
lator set. This is a fragment of a network learned in the experiments
of Pe’er et al. (24). (B) A summary of direct neighbor relations among
the genes shown in (A) based on bootstrap estimates. Degrees of
confidence are denoted by edge thickness. We automatically identify
a subnetwork of genes, with high-confidence relations among them,
that are involved in the yeast-mating pathways. The colors highlight
genes with known function in mating, including signal transduction
(yellow), transcription factors (blue), and downstream effectors
(green). (C) A fragment of a two-level network described by Pe’er et
al. (25). The top level contains a small number of regulators; the

bottom level contains all other genes (targets). Each gene has differ-
ent regulators from among the regulator genes. (D) Visualization of
significant Gene Ontology (42) annotations of the targets of different
regulators. Each significant annotation for the targets of a regulator
(or pairs of regulators) is shown with the hypergeometric p-value. (E)
A fragment of the module network described by Segal et al. (26). Each
module contains several genes that share the same set of regulators and
share the same conditional regulation program given these regulators. (F)
Visualization of the expression levels of the 55 genes in Module 1 (b) and
their regulators (a). Significant Gene Ontology annotations (c) and cis-
regulatory motifs in promoter regions of genes in the module (d) are shown.
[See figure 3 of (26); reproduced with permission]

M A T H E M A T I C S I N B I O L O G Y

6 FEBRUARY 2004 VOL 303 SCIENCE www.sciencemag.org804

S
P
E
C
IA
L
S
E
C
T
IO
N

 o
n

 F
e

b
ru

a
ry

 2
7

,
2

0
0

8

w
w

w
.s

c
ie

n
c
e

m
a

g
.o

rg
D

o
w

n
lo

a
d

e
d

 f
ro

m

complete data

decomposable
scoring function

for graphs
highest scoring
acyclic graph

conditional probability
estimates for each variable

score(i|pai;D) parent selection scores
for each variable

score(G; D) =
dX

i=1

score(i|pai, D)

✓̂i(xi|xpai
)

Figure 4: A summary of Bayesian network structure learning steps

8

