
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.S064 Introduction to Machine Learning

Phase 4: Reinforcement learning (lectures 20-21)

Learning from Feedback

!%

Figure 1: A robot navigation problem.

Let’s consider a robot navigation problem (see the Fig 1 for illustration). At each
point in time, our robot is located at a certain position on the grid. Our robot also
has sensors which can help predict (with some noise) its position within the grid. Our
goal is to bring the robot to its desired final destination (e.g., charging station). The
robot can from one position to another in small increments. However, we assume that
the movements are not deterministic. In other words, with some probability the robot
moves to the desired next position, but there is also a chance that it ends up in another
nearby location (e.g., applying a bit too much power). Let’s assume for simplicity that
the states are discrete. That is, the positions correspond to grid points.

At the first glance, this problem may resemble HMMs: we use states yt to encode
the position of the robot, and observations xt capture the sensor readings. The process
is clearly Markov in the sense that the transition to the next state is only determined
by the current state.

In the case of HMMs, we represent transitions as T (i, j) = p(yt+1 = j|yt = i). What
is missing? This parametrization does not account for the fact that the robot can select

1



state:%% yt
obs:%% xt

…%

yt yt+1

xt xt+1

Figure 2: HMM.

actions such as the direction that it wants to move in. We will therefore expand the
transition probabilities to incorporate selected actions — T (i, k, j) = p(yt+1 = j|yt =
i, at = k) specifies the probability of transitioning to j from i after taking action a.

…%

yt yt+1

xt xt+1

at at+1

Figure 3: HMM with action.

In contrast to the more realistic setting discussed above, we will make the model
simpler here by assuming that the states are directly observable. I.e., at every point,
the robot knows its exact location in the greed. Put another way, the observation xt
fully determines yt, and we will drop xt as a result.

…%

yt yt+1

xt xt+1

at at+1

Figure 4: HMM without xt.

The remaining piece in our robot navigation problem is to specify costs or rewards.
Rewards can be associated with states R(st) (e.g., the target charging station has a
high reward) or they can also take into account the action that brings the robot to the
follow-up state R(st, at, st+1). Here is a simple example of a reward function:

2



+1%

)1%

0.8%

0.1% 0.1%

Figure 5: Robot and grid.

Rst =

{
1 if on target
0 otherwise

(1)

Utility Function Intuitively, a utility function would be the sum of all the rewards
that the robot accumulates. However, this definition may result in acquiring infinite
reward (for instance, when the robot loops around). Also, it may be better to acquire
high rewards sooner than later. One possible setting is to assume that the robot has a
finite horizon: after N steps, the utility value doesn’t change at all:

U([s0, s1, . . . , sN+k]) = Un([s0, s1, . . . , sN ]) ∀k

+1%

)1%

+1%

)1%

infinite%horizon% finite%horizon%
k=3%

Figure 6: Policy with different horizon.

However, under this assumption the optimal strategy depends on how long the agent
has to live (see Fig below). Thus, the optimal action would not only depend on the state
that the robot is in, but would also depend on the time that it has left.

An alternative approach is to use so called discounted rewards. Even for infinite se-
quences, this utility function is guaranteed to have a finite value so long as the individual
rewards are finite. For 0 ≤ γ < 1, we define it as

U([s0, s1, s2 . . . ]) = R(s0) + γR(s1) + γ2R(s2) + . . . (2)

=
∞∑
t=0

γtR(st) ≤
∞∑
t=0

γtRmax =
Rmax

1− γ
(3)

3



This formulations assigns higher utilities to rewards that come early. The discounting
also helps us solve for these utilities (important for convergence of the algorithms we
will cover later in the lecture).

Another way to think of the discounted utility is by augmenting our state space
with an additional ”halt” state. Once the agent reaches this state, the experience stops.
At any point, we will transition to this halt state with probability 1 − γ. Thus the
probability that we continue to move on is γ. Larger γ means longer horizon.

Policy A policy π is a function that specifies an action for each state. Our goal
is to compute an optimal policy that maximizes the expected utility, i.e., the action
that the robot takes in any state is chosen with the idea of maximizing the discounted
future rewards. As illustrated in Fig 7, an optimal policy depends heavily on the reward
function. In fact, it is the reward function that specifies the goal.

+1%

)1%

+1%

)1%

R(s) = −0.01 R(s) = −2.0

Figure 7: Policy with different rewards.

We will consider here two ways to learn the optimal policy:

• Markov Decision Process (MDP). We assume that reward function and tran-
sition probabilities are known and available to the robot. More specifically, we are
provided with

– a set of states S

– a set of actions A

– a transition probability function T (s, a, s′) = p(s′|a, s)
– a reward function R(s, a, s′) (or just R(s′))

• Reinforcement Learning The reward function and transition probabilities are
unknown (except for their form), and the robot only knows

– a set of states S

– a set of actions A

4



Value iteration

Value iteration is an algorithm for finding the (an) optimal policy for a given MDP. The
algorithm iteratively estimates the value of each state; in turn, these values are used to
compute the optimal policy. We will use the following notations:

• V ∗(s) – The value of state s, i.e., the expected utility of starting in state s and
acting optimally thereafter.

• Q∗(s, a) – The Q value of state s and action s. It is the expected utility of starting
in state s, taking action a and acting optimally thereafter.

• π∗(s) –The optimal policy. π∗(s) specifies the action we should take in state s.
Following policy π∗ would, in expectation, result in the highest expected utility.

The above quantities are clearly related:

V ∗(s) = max
a
Q∗(s, a) = Q∗(s, π∗(s)) (4)

Q∗(s, a) =
∑
s′

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)] (5)

V ∗(s) = max
a

∑
s′

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)] (6)

=
∑
s′

T (s, π∗(s), s′)[R(s, π∗(s), s′) + γV ∗(s′)] (7)

For example, in Eq.(5), we evaluate the expected reward of taking action a in state
s. We sum over the possible next states s′, weighted by the transition probabilities
corresponding to the state s and action a. Each summand combines the immediate
reward with the expected utility we would get if we started from s′ and followed the
optimal policy thereafter. The future utility is discounted by γ as discussed above. In
other words, we have simple one-step lookahead relationship among the utility values.

Based on these equations, we can recursively estimate V ∗k (s), the optimal value
considering next k steps. As k → ∞, the algorithm converges to the optimal values
V ∗(s).

The Value Iteration Algorithm

• Start with V ∗0 (s) = 0, for all s ∈ S

• Given V ∗i , calculate the values for all states s ∈ S (depth i+ 1):

V ∗i+1(s) = max
a

∑
s′

T (s, a, s′)[R(s, a, s′) + γV ∗i (s′)]

• Repeat until convergence (until Vi+1(s) is nearly Vi(s) for all states)

5



The convergence of this algorithm is guaranteed. We will not show a full proof here
but just illustrate the basic idea. Consider a simple MDP with a single state and a
single action. In such a case:

Vi+1 = R + γVi

We also know that for the optimal V* the following must hold:

V ∗ = R + γV ∗

By subtracting these two expressions, we get:

(Vi+1 − V ∗) = γ(Vi − V ∗)

Thus, after each iteration, the difference between the estimate and the optimal value
decreases by a factor γ < 1.

Once the values are computed, we can turn them into the optimal policy:

Q∗(s, a) =
∑
s

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)]

π∗(s) = arg max
a
Q∗(s, a)

As we rely on the Q-values to get the policy, we could alternatively compute these
values directly. Here is an algorithm that does exactly that.

The Q-Value Iteration Algorithm

• Start with Q∗0(s, a) = 0 for all s ∈ S, a ∈ A.

• Given Q∗i (s, a), calculate the q-values for all states (depth i+1) and for all actions
a:

Q∗i+1(s, a) =
∑
s′

T (s, a, s′)[R(s, a, s′) + γmax
a′

Q∗i (s
′, a′)]

This algorithm has the same convergence guarantees as its value iteration counter-
part.

Reinforcement learning

Now, we will consider a set-up where neither reward no transitions are known a priori.
Our robot can travel in the grid, moving from one state to another, collecting rewards
along the way. The model of the world in unknown to the robot other than the overall
Markov structure. The robot could do one of two things. First, it could try to learn
the model, the reward and transition probabilities, and then solve the optimal policy
using the algorithms for MDPs described above. Another option is to try to learn the
Q-values directly.

6



Model-based learning We first assume that we can collect information about
transitions involving any state s and action a. Under this assumption, we can learn T
and R through experience, by collecting outcomes for each s and a.

T (s, a, s′) =
count(s, a, s′)∑
s′ count(s, a, s

′)

R(s, a, s′) =

∑
tRt(s, a, s

′)

count(s, a, s′)

where Rt(s, a, s
′) is the reward we observed when starting in state s, taking action

a, and transitioning to s′. If the reward is noisy, observed rewards Rt() may vary from
one instance to another. In reality, this naive approach is highly ineffective for any
non-trivial state space. The best we can do is randomly explore, taking actions and
moving from one state to another. Most likely, we will be unable to reach many parts
of the state space in any complex environment. Moreover, the learned model would be
quite large as we’d have to store all the states and possible transitions.

Model-free learning Can we learn how to act without learning a full model?
Remember:

pi∗(s) = arg max
a
Q∗(s, a)

We have shown that Q-values can be learned recursively, assuming we have access
to T and R. Since this information is not provided to us, we will consider Q-learning
algorithm, a sample based Q-value iteration procedure.

To better understand the difference between model-based and model-free estima-
tion, consider the task of computing the expected value of a function f(x): E[f(x)] =∑

x p(x)f(x)

• Model-based computation: First estimate p(x) from samples and then compute
expectation:

xi∼p(x), i = 1, . . . , k

p̂(x) =
count(x)

k

E[f(x)]≈
∑
x

p̂(x)f(x)

• Model-free estimation: estimate expectation directly from samples

xi∼p(x), i = 1, . . . , k

E[f(x)]≈1

k

k∑
i=1

f(xi)

7



Now we will apply the model-free learning approach to the estimation of Q-values.
Recall,

Q∗i+1(s, a) =
∑
s′

T (s, a, s′)[R(s, a, s′) + γmaxa′Q
∗
i (s
′, a′)]

We will repeatedly take one action at a time, and observe the reward and the next
state. We can compute:

sample1 : R(s, a, s′1) + γmax
a′

Qi(s
′
1, a
′)

sample2 : R(s, a, s′2) + γmax
a′

Qi(s
′
2, a
′)

· · ·

samplek : R(s, a, s′k) + γmax
a′

Qi(s
′
k, a
′)

Now we can average all the samples, to obtain the Q-value estimate:

Qi+1(s, a) =
1

k

k∑
l=1

[
R(s, a, s′l) + γmax

a′
Qi(s

′
l, a
′)
]

which, for large k, would be very close to the Q-value iteration step. We are almost
there. In practice, we only observe the states when we actually move. Therefore, we
cannot really collect all these sample at once. Instead, we will update the Q-values after
every experience (s, a, s′, r), where r is the reward.

Q-learning Algorithm

• Collect a sample: s, a, s′, and R(s, a, s′).

• Update Q-values, by incorporating the new sample into a running average over
samples:

Q(s, a)← (1− α)Q(s, a) + α
[
R(s, a, s′) + γmax

a′
Q(s′, a′)

]
(8)

= Q(s, a) + α
[
R(s, a, s′) + γmax

a′
Q(s′, a′)−Q(s, a)

]
(9)

where the learning rate α takes the role of 1/k in the earlier sample average example.
During the iterations of the algorithm, likely s′ will contribute more often to the Q-
values estimate. As the algorithm progresses, old estimates fade, making the Q-value
more consistent with more recent samples.

You may have noticed that the form of the update closely resembles stochastic gra-
dient decent. In fact, it has the same convergence conditions as the gradient ascent
algorithm. Each sample corresponds to (s, a), i.e., being in state s and taking action
a. We can assign a separate learning rate for each such case, i.e., α = αk(s, a), where

8



k is the number of times that we saw (s, a). Then, in order to ensure convergence, we
should have ∑

k

αk(s, a)→∞

∑
k

α2
k(s, a) <∞

Exploration/Exploitation Trade-Off In the Q-learning algorithm, we haven’t
specified how to select an action for a new sample. One option is to do it fully randomly.
While this exploration strategy has a potential to cover a wide spectrum of possible
actions, most likely it will select plenty of suboptimal actions, and leads to a poor
exploration of the relevant (high reward) part of the state space. Another option is to
exploit the knowledge we have already obtained during previous iterations. Remember
that once we have Q estimates, we can compute a policy. Since our estimates are noisy
in the beginning, and the corresponding policy is weak, we wouldn’t want to follow this
policy completely. To allow for additional exploration, we select a random action every
once in a while. Specifically, with prob ε, the action is selected at random and with
probability (1 − ε), we follow the policy induced by the current Q-values. Over time,
we can decrease ε, to rely more heavily on the learned policy as it improves based on
the Q-learning updates.

9


